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GENERAL ABSTRACT 

Disparate lines of evidence including in vitro cell culture, ex vivo brain slice culture, 

and virtually every in vivo model system have clearly implicated microglia activation and 

neuroinflammation in the pathophysiology of the dopaminergic neuronal cell death in 

Parkinson’s disease (PD). The signaling pathways that lead to this chronic activation are still 

being elucidated. We show herein, the role of the non-receptor Src family tyrosine kinase 

Fyn in mediating pro-inflammatory signaling in microglia cells in response to various 

inflammogens. Our results from cell and animal models as well as postmortem brain tissues 

conclusively demonstrate that Fyn is preferentially activated in microglia post-stimulation 

with either Lipopolysaccharide (LPS) or Tumor necrosis factor alpha (TNFα). Activated Fyn 

then tyrosine-phosphorylates the known pro-inflammatory kinase PKCδ, mediating PKCδ-

dependent activation of the NF-κB pathway, leading to pro-inflammatory cytokine and nitrite 

production. Both Fyn-/- and PKCδ-/- mice were remarkably resistant to LPS-mediated 

neuroinflammation, as well as neuroinflammation and dopaminergic neuronal loss induced 

by the Parkinsonian toxicant 6-hydroxydopamine (6-OHDA).  

Activation of the NLRP3 inflammasome, mediated by fibrillar amyloid-β, the major 

component of Alzheimer’s disease-associated senile plaques, has recently been shown to 

contribute to disease progression. Thus, we sought to validate whether the aggregated form 

of the PD-associated protein α-synuclein could activate the NLRP3 inflammasome within 

microglia. Our results conclusively demonstrate that α-synuclein can elicit the NF-κB-

dependent induction of the inflammasome components pro-IL-1β and NLRP3, as well as the 

Caspase-1- and ASC-dependent processing of pro-IL-1β to mature IL-1β. Remarkably, Fyn 

kinase was shown to contribute to both processes, via PKCδ-dependent NF-κB pathway 
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activation to prime the NLRP3 inflammasome as well as to the uptake of α-synuclein into the 

cell, which leads to the assembly and activation of the inflammasome complex. Lastly, we 

demonstrate activation of the NLRP3 inflammasome in various α-synuclein-overexpressing 

PD model systems, as well as in post-mortem PD patient tissues. Fyn also contributes to 

microglial ASC speck formation in the adenoviral α-synuclein overexpression system. 

Overall, we identify Fyn kinase as a key upstream regulator of the microglia-mediated 

chronic neuroinflammatory cascade that is central to the pathophysiological process of nigral 

dopaminergic degeneration in PD.  
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CHAPTER 1. GENERAL INTRODUCTION 

Thesis Layout & Organization 

The alternative format was chosen for this thesis and consists of manuscripts that 

have been published, or are being prepared for submission. The dissertation contains a 

general introduction, three research papers and a conclusions/future directions section that 

briefly discusses the overall findings from all chapters, and charts out where the research 

story will be taken next. The references for each manuscript chapter are listed at the end of 

that specific section. References pertaining to the background and literature review as well as 

those used in general conclusion section are listed at the end of the dissertation. The 

introduction section under Chapter 1 provides a background and overview of Parkinson’s 

disease (PD). The Background and Literature Review-I section covers current evidence 

implicating a pathogenic role for reactive microgliosis in mediating progressive 

dopaminergic neuron loss in Parkinson’s disease. It also introduces the non-receptor tyrosine 

kinase Fyn and serine threonine kinase protein kinase C delta (PKCδ) and discusses their 

roles in pro-inflammatory signaling in immune cells, thus providing an overview of the 

research objectives pertaining to Chapter 2.  The Background and Literature Review-II 

pertains to Chapters 3 and 4 and provides an introduction to inflammasomes and their roles 

in neurodegenerative and neuroimmune diseases. The manuscript from Chapter 2 was 

recently published in the Journal of Neuroscience. It studies the roles of the Fyn-PKCδ axis 

in mediating pro-inflammatory responses in microglia in in-vitro and in-vivo models of PD.  

Chapter 3 explores how aggregated  α-synuclein, the major component of PD-associated 

Lewy bodies and a gene linked to the development of familial PD, can prime and activate the 

NLRP3 inflammasome in a Fyn dependent manner. Chapter 4 studies how Fyn contributes to 
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microgliosis and inflammasome activation in α-synuclein mediated in-vivo PD models as 

well as in post-mortem PD brain tissues. Chapters 3 and 4 are in the process of being 

submitted for publication. 

All of the research described by the author in this thesis was performed during the 

course of his doctoral studies at Iowa State University under the guidance of Dr. Anumantha 

G. Kanthasamy.  
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Introduction 

First described as the shaking palsy by James Parkinson in 1817, Parkinson’s Disease 

is a progressive neurodegenerative disorder characterized by the onset of motor deficits- 

resting tremors, bradykinesia (or slowness of movement), akinesia (or absence of 

movement), rigidity and postural instability.  Recently, various non-motor symptoms have 

also been linked to PD 

development.  These include 

olfactory deficits, constipation, 

and sleep disorders. In many 

cases, these symptoms can 

precede motor deficits by 

several years. PD is the second 

most-prevalent neurodegener-

ative disorder in the world, 

with over a million currently 

affected in the United States 

alone (von Bohlen und 

Halbach et al., 2004). 

Idiopathic PD has a median onset of 60 years, and the occurrence frequency increases with 

age. The best-characterized feature of PD is the selective death of melanized dopaminergic 

neurons in the substantia nigra (SN) pars compacta (pc) of the brain, which project to the 

caudate putamen. This results in the depletion of dopamine in this region in PD patients. By 

the time the symptoms are manifested, more than 60% of the dopaminergic neurons have 

 

SNpc 

Ventral tegmental 
     area (VTA) 

 

Figure 1. Murine coronal ventral-midbrain section stained for the 
dopaminergic neuronal marker tyrosine hydroxylase (TH) via 3,3'-
diaminobenzidine (DAB) immunohistochemistry 
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already been lost, along with 80% of the striatal dopamine content (Dauer and Przedborski, 

2003).  The death of neurons in other regions, such as the ventral tegmental area (VTA), has 

also been documented. The mouse SNpc and VTA are demonstrated in Figure 1. 

In PD genetics nomenclature, 18 chromosomal regions, which have been assigned a  

‘PARK’ status, have been found to be associated with PD. However, only 6 of these regions 

code for genes that are conclusively responsible for monogenic PD (whereby a mutation in 

the gene is sufficient to cause PD). Among these 6 genes, mutations in SNCA, the gene that 

codes for the α-synuclein protein (PARK1 and 4), and LRRK2 (PARK8) are responsible for 

autosomal-dominant PD (AD–PD) forms, whereas mutations in Parkin (PARK2), PINK1 

(PARK6), DJ-1 (PARK7), and ATP13A2 (PARK9) result in a form of autosomal recessive 

PD (AR-PD) (Klein and Westenberger, 2012). 

The major neuropathological hallmark of sporadic PD is the presence of aggregated 

α-synuclein containing intracytoplasmic Lewy Bodies. The factors that are associated with 

PD associated neurodegeneration include mitochondrial dysfunction, proteasomal 

impairment and excessive reactive oxidative species (ROS) production(Jenner and Olanow, 

2006; Levy et al., 2009; Olanow, 2007; Przedborski, 2005). The emerging consensus 

suggests that PD is a complex, heterogeneous disease with multiple genetic as well as 

environmental causative factors. The fact that multiple interacting factors appear to 

contribute to PD progression makes therapeutic intervention an immense challenge. Most of 

the drugs and therapies that are prescribed for PD patients today, including L-DOPA 

administration and deep brain stimulation, only alleviate PD symptoms and have no effect in 

slowing the progression of the disease.  
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Reactive microgliosis is another prominent feature of PD; loss of dopaminergic 

neurons within the SN is accompanied by a concomitant increase in the number of microglial 

cells found in this region, as well as by an increase in the activation of these cells (Bartels 

and Leenders, 2007; Mosley et al., 2006; Whitton, 2007). Chronic activation of microglia has 

been shown to contribute to 

dopaminergic neuronal death. 

Activated microglia produce ROS 

and nitrite, as well as pro-

inflammatory mediators that can 

directly effect neuron death, and/or 

bring about further glial activation, 

perpetuating the inflammatory 

response. Figure 2 shows Iba-1 

positive microglial cell within the 

SNpc, apposed against a TH positive dopaminergic neuron. 

 The current consensus on the progression of PD is that is arises from the complex 

interactions between the environmental and genetic processes, which in tandem cause the 

progressive loss of dopaminergic neurons over time. A ‘multiple hit’ hypothesis for disease 

onset has been postulated, wherein multiple causative factors can accumulate over decades, 

resulting in what is described as idiopathic PD (Carvey et al., 2006). 

Several genes associated with Parkinson’s Disease have multifactorial roles, 

specifically with regards to neuroinflammation, that may contribute to PD pathology; fibrilar 

α-synuclein can cause apoptosis (Cookson, 2009), and in its aggregated form, can also 

Figure 2 

Figure 2 

Figure 2. Confocal Z-stack maximal projection image of 
dopaminergic neuron and microglial cell in the SNpc of a 6-OHDA 
injected mouse. 
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potently activate microglial cells, leading to the production of proinflammatory cytokines and 

chemokines (Kim et al., 2013a; Lee et al., 2010; Su et al., 2008).  LRRK2, PINK1 and DJ-1 

have also been implicated to play a role in the process of autophagy, required for proper 

degradation and turnover of various proteins and/or organelles within the cell. LRRK2 has 

been shown to promote microglial pro-inflammatory responses (Moehle et al., 2012). PINK1 

deficiency enhances microglial pro-inflammatory signaling in brain slices, including the 

activation of the NF-κB pathway (Kim et al., 2013b), and the loss of DJ-1 promotes pro-

inflammatory signaling in microglia and astrocytes due to hyperactivation of STAT1 (Kim et 

al., 2013c).  

Hence, neuroinflammation may be a promising target to control the progression of 

PD, as well as other neurodegenerative disorders; exacerbated neuroinflammation has been 

demonstrated in every model of PD, and non-steroidal anti-inflammatory drug intake has 

been linked to a lower risk of acquiring PD (Bower et al., 2006; Chen et al., 2003). 

Therefore, identification of novel signaling pathways that play a role in the hyperactivation 

of microglia may serve as an attractive drug target to prevent the progression of PD. 
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Background and Literature Review – I 

Neuroinflammation and an introduction to Fyn and PKCδ signaling  

Inflammatory responses need to be tightly regulated; on the one hand, they must effectively 

deal with invading pathogens, killing and clearing them as well as dead or dying cell debris, 

which if left uncleared, would prevent healing and serve as sites for infection. At the same 

time, the responses themselves produce potentially toxic factors that can elicit significant 

pathology (Glass et al., 2010). Neuroinflammation is an example of the latter process gone 

awry within the central nervous system (CNS). An exaggerated neuroinflammatory 

component has been consistently associated with most neurodegenerative disorders, such as 

Alzheimer’s disease, Amyotrophic lateral sclerosis, Huntington’s disease and PD (Block et 

al., 2007; Minghetti, 2005). The hallmark of neuroinflammation is the persistent 

hyperactivation of the microglia and astrocytes at the site of neurodegeneration.  In many of 

these diseases, this hyperactivation is mediated by sterile inflammogens in the form of 

aggregated or misfolded proteins or peptides, as indicated in Table 1. Previously, the major 

role of reactive gliosis accompanying neurodegeneration was believed to be phagocytic 

clearance of dead and dying neurons, and thought to be a generally supportive process to 

maintain homeostasis within the central nervous system (CNS). One major reason for this 

line of thought is because microglia have been demonstrated to play a role in establishment 

of synapses within the developing brain, and contribute to neuronal health by the production 

of various trophic factors (Aarum et al., 2003; Walton et al., 2006). Microglia also serve as 

the major neuroimmune response to infection within the central nervous system. In many 

cases post acute brain injury or infection, neuroinflammatory responses are transient, and 

subside upon clearance of the offending substance. However, in neurodegenerative disorders  
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such as PD, the neuroinflammatory responses are chronic and progressive, and are 

demonstrated in most animal models of the disease, such as the MPTP, 6 –OHDA and LPS 

models (Panicker et al., 2015) as well as in post mortem PD patient tissues (Imamura et al., 

2003). 
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Microglial cells and their role in the CNS 

Microglia are the resident macrophagic cells of the CNS. Rio Hortega was the first to 

observe their phagocytic properties and suggest that they could function similarly to 

macrophages. This was later corroborated by Hickey and Kimura (Hickey and Kimura, 

1988), when they demonstrated that perivascular microglia are antigen presenting cells that 

express high levels of MHC class II molecules. Contrary to popular opinion, microglial cells 

do not arise from the bone-marrow hematopoietic stem cells. Utilizing studies carried out 

with parabiotic mice (which are surgically connected and have a common blood circulatory 

system) suggested that postnatal microglial cells are maintained in the CNS independently of 

circulating monocytes. They were found to arise from primitive myeloid progenitors, which 

arise from the yolk sac (Ginhoux et al., 2013). Microglia comprise 10-15% of the total cells 

in the brain, and their density varies with different areas of the brain – the hippocampus and 

ventral midbrain, including the SN, show highest concentrations of microglia. Microglial 

activation is our body’s first response to neuronal injury in both acute and chronic 

neurodegenerative states. In a normal adult brain, microglia typically exist in their normal or 

‘resting’ state, which is consistently identifiable by a ramified morphology. They secrete 

anti-inflammatory and neurotrophic factors which promote neuronal survival and plasticity 

(Carson, 2002). Recent studies have demonstrated that microglia are highly dynamic and 

mobile; constantly scanning and surveying their external microenvironment for signs of any 

kind of neuronal injury (Nimmerjahn et al., 2005). Upon encountering a potential pathogen 

or neuroinflammatory agent, these cells undergo a rapid transformation to an amoeboid form, 

or ‘activated’ state, with concurrent upregulation of various cell surface proteins as well as 

cytokine and chemokine receptors. Transcriptional activation of response genes typically 
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occurs rapidly in microglia. Activated microglia can produce a plethora of secreted factors 

that can alter the environment at the site of neuronal injury or cell death. ‘Natural’ activation 

of microglia, which is transient and highly regulated, typically facilitates a microenvironment 

that is conducive to neuron survival and restoration of homeostasis (Glezer et al., 2007; 

Napoli and Neumann, 2010; Simard and Rivest, 2007). To achieve that goal, microglia 

produce anti-inflammatory factors such as BDNF, GDNF, IL-10 and TGFβ1, which can 

actually prevent neuronal apoptosis and effect neuronal differentiation of existing pools of 

neuronal progenitor cells. Microglia have also been shown to protect neurons from 

excitotoxicity by upregulating GLT-1, a glutamate uptake protein under conditions where 

astrocytic glutamate uptake is impaired (Persson et al., 2005; Shaked et al., 2005). 

Additionally, microglia are solely responsible for the phagocytic clearance of dead cells from 

the site of injury. They can also participate in the regeneration of synapses by facilitating 

synapse removal at the site of injury. The stripping of synapses and clearance of local cell 

debris provides an environment that engenders neurogenesis and the migration of 

neuroprogenitor cells in the brain. Microglia can also inhibit local neurogenesis by providing 

a local pro-inflammatory environment (Butovsky et al., 2006). Their activation and secretion 

of trophic factors at the site of injury for infection was thought to facilitate a return to 

homeostasis (Kreutzberg, 1996). 

 

Microglial activation in neurodegenerative disorders 

Unregulated, elevated and sustained levels of microglial activation leads to microglial 

hyperactivation, which is the predominant state of microglia at the site of neuron loss in case 

of neurodegenerative disorders. Hyperactivation of microglia is distinct from the transient 
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microglial activation, both morphologically as well as in regards to the secretory factors 

produced. Several lines of evidence, from cell culture, co-culture, animal models, post 

mortem tissue analyses and genetic linkage analysis conclusively demonstrates that sustained 

neuroinflammation negatively affects neuron health, and in fact contributes to neuron death. 

Activated microglia change their morphology from ramified or branched to amoeboid. 

Activated microglia release ROS, nitrite and various other pro-inflammatory mediators and 

cytokines that can be toxic over time (Aschner et al., 1999; Glass et al., 2010). 

 

Clinical evidence of neuroinflammation playing a critical role in the progression of PD 

Substantiation for the critical role of neuroinflammation and microglial 

hyperactivation in PD comes from several sources; Post mortem analysis of PD brains clearly 

indicates amoeboid microglia around the regions of melanized dopaminergic neuron loss. PD 

Patients also display upregulated levels of pro-inflammatory cytokines in their cerebrospinal 

fluid (Banati et al., 1998; McGeer et al., 1988; Vawter et al., 1996; Whitton, 2007). Increased 

levels of many of these cytokines, such as TNFα, IL-1β and IFNγ has also directly 

demonstrated within the PD brain itself (Hirsch et al., 2005; Hunot et al., 1997; McGeer et 

al., 1988; Mogi et al., 2000). Apart from nigral inflammation, excessive inflammation in the 

striatum and basal ganglia has also been demonstrated via PET imaging. New evidence also 

suggests that innate immune responses may not be the sole signaling mechanisms that go 

awry in PD; Animal PD models, and more importantly, post-mortem PD tissue analysis also 

revealed the entry of CD8+ and CD4 + cells into the SN. Infiltrating T cells can serve as 

neuroprotective as well as neurotoxic agents, depending on the pre-existing stimuli within the 

brain. Post mortem analysis of the heroin addicts who accidentally injected MPTP and 
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developed rapid onset Parkinsonism also demonstrated massive microgliosis (Langston et al., 

1999). Adenoviral overexpression of IL-1β in the SN of mice was discovered to cause 

progressive dopaminergic neurodegeneration and a concurrent loss of motor function (Ferrari 

et al., 2006). Several genetic linkage studies in PD patient and age-matched control groups 

have identified single nucleotide polymorphisms (SNPs) that are linked to PD development. 

Some of the SNPs are found within the promoter regions of pro-inflammatory genes 

(Hakansson et al., 2005; Kruger et al., 2000; Nishimura et al., 2001; Nishimura et al., 2000).  

Lastly, as mentioned in the introduction section, regular NSAID use is associated with a 

reduced risk for developing PD. 

 

Evidence for neuroinflammation in animal models of PD 

Neuroinflammation has consistently been demonstrated as being a fundamental 

hallmark of every PD mouse model: 

1. The MPTP model  

An acute regimen of the Parkinsonian toxicant MPTP (4 injections at 18 mg/kg, 

spaced out every 2 hours) has widely been used to evoke a neuroinflammatory response, 

evidenced by an induction of pro-inflammatory proteins with the SN and the Striatum, and 

concurrent change in microglial morphology from ramified to amoeboid. (Hirsch and Hunot, 

2009; Sriram et al., 2006; Wu et al., 2002; Wu et al., 2003). Preventing microglial 

hyperactivation by preventing microglial ROS generation via NAPDH complex inhibition, as 

well as inhibiting microglial NOS2 and NF-κB function can be greatly neuroprotective in 

this model (Du et al., 2001; Ghosh et al., 2002; Ghosh et al., 2007). 
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2. The 6-OHDA model  

Before the development of the MPTP model, the 6-OHDA model was widely utilized 

to elicit neurodegeneration within the SN. Despite its usage, which began in the 1960s, 

evidence of neuroinflammation in this model was only recently demonstrated with 

unequivocal clarity (Stott and Barker, 2014; Virgone-Carlotta et al., 2013). 

3. AAV-Synuclein overexpression model  

Recently developed models of PD include the AAV-SYN model, which entails 

delivery of an adeno-associated virus overexpressing human α-synuclein into the SN or the 

striatum. 

Green 

fluorescent 

protein 

overexpressi

ng adeno-

associated 

virus(AAV-GFP) is used as the control for these experiments. Several studies have 

demonstrated a clear role of microgliosis, including increased pro-inflammatory cytokine 

production,  and IgG deposition within the SN (Chung et al., 2009; Theodore et al., 2008). 

AAV mediated GFP overexpression in the SNpc dopaminergic neurons is demonstrated in 

Figure 3. 

4. The Mitopark model  

The recently developed Mitopark model entails the selective knockdown of the 

mitochondrial transcription factor TFAM in dopaminergic neurons. This results in a 

 

SNpc 
Red: TH 
Green:GFP 

Figure 3. AAV-mediated GFP overexpression in the SNpc dopaminergic neurons. The AAV-
GFP construct was stereotactically injected into the mouse SNpc and targeted overexpression 
validated by double IHC for GFP and TH. 
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progressive, age dependent loss of dopaminergic neurons that begins from 12 weeks 

onwards. Recent evidence of neuroinflammation in the MitoPark mice were recently 

demonstrated by our group (Langley et al., unpublished). 

5. Lipopolysaccharide (LPS) based models of PD  

Possibly the strongest evidence for the role of inflammation in PD, comes from 

various animal models that utilize LPS as a Parkinsonian neurotoxin. LPS is a component of 

the cell wall of gram negative bacteria. It is a potent inflammogen, acting as a pathogen 

associated molecular pattern (PAMP) that evokes an innate inflammatory response from 

immune cells. Intranigral injection of LPS is sufficient to elicit both a neuroinflammatory 

response, as well as dopaminergic neuron death in the absence of any other neurotoxic agent. 

Intraperitoneal administration of LPS is also able to elicit a  rapid, yet sustained 

neuroinflammatory response (Castano et al., 1998, 2002; Herrera et al., 2000; Hsieh et al., 

2002; Qin et al., 2007). The LPS model is distinct from all the aforementioned models, since 

the other models elicit a microglial response by first bringing about dopaminergic neuron 

loss or stress, whereas LPS selectively brings about microglial activation and subsequent 

neuron death. LPS can also act in concert with MPTP and other mitochondrial toxicants 

including rotenone, paraquat and manganese to amplify dopaminergic cell death (Gao et al., 

2003a, b; Zhang et al., 2010), indicating that PD associated environmental hazards can 

contribute to PD associated neuroinflammation and neuron loss. 

 

Signaling mechanisms that regulate microglial hyperactivation in Parkinson’s disease 

Although the LPS model clearly demonstrates that microgliosis can initiate and contribute to 

dopaminergic neuronal loss, the clinical significance of using LPS is limited, since PD does 
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not involve CNS bacterial infection. However, in the past few years, it has become evident 

that misfolded proteins within 

the CNS can elicit a sterile 

inflammatory response in 

microglial cells. Exploring the 

cell signaling mechanisms that 

regulate microgliosis is an 

active area of investigation. α-

synuclein, the 14 kDa protein 

which was found to be 

associated with AD PD as well as a major component of PD associated Lewy bodies was 

found to activate microglia in its aggregated, nitrated and oxidized form (Reynolds et al., 

2008; Zhang et al., 2005), α-synuclein is taken up by microglia, which is followed by the 

production of ROS and various pro-inflammatory cytokines, and this neuroinflammatory 

response has been shown to be complicit in the cell death that occurs in these models. Even 

though it has been conclusively demonstrated that pathogenic forms of α-synuclein can lead 

to MAP kinase activation and nuclear p65-NF-κB translocation, the signaling pathway 

through which these classical inflammatory signaling pathways were activated in microglia 

post synuclein stimulation is poorly characterized.  The aggregated α-synuclein mediated 

pro-inflammatory cytokine induction was only recently shown to be Myd-88 dependent 

(Daniele et al., 2015). The receptor that mediates α-synuclein uptake and is responsible pro-

inflammatory signaling has not been conclusively identified, although circumstantial 

evidence in various studies has identified TLR2 (Kim et al., 2013a), TLR4 (Fellner et al., 

Figure 4. Sterile inflammation and neurodegeneration: A mutually 
amplifying, self-sustaining process. 
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2013) CD36 (Su et al., 2008), And the gamma chain subunit of Fc receptors (Cao et al., 

2012). 

Apart from modified forms of α-synuclein, the neuromelanin found in melanized 

dopaminergic neuronal cells can be taken up my microglia and activate them (Wilms et al., 

2003; Zecca et al., 2008). Neuron secreted Matrix Metalloprotease 3 (MMP-3) MMP-3, 

which activates microglia via protease-activated receptors (Kim et al., 2007). Lastly, PD 

associated environmental toxicants such as the pesticides rotenone and paraquat (Bonneh-

Barkay et al., 2005; Gao et al., 2002) were shown to elicit neuronal death through microglial 

ROS generation.  

The current consensus of the role that neuroinflammation plays in PD is summarized 

in Figure 4, (adapted from Block et al., 2007), which demonstrates that neuronal damage, 

wrought by environmental toxicants or mutations, effect the release of misfolded proteins 

from dead or dying dopaminergic neurons. These misfolded proteins can activate resident 

brain microglia, bringing about the release of ROS, nitrite and pro-inflammatory cytokines, 

which can further exacerbate neuronal health. In summary, sterile neuroinflammation plays a 

significant role in the development of PD, but the signaling mechanisms that underlie this 

process are poorly understood and characterized. Discovering novel signaling nodes could 

identify potential targets for developing therapies for PD. 

 

Fyn kinase 

 Fyn is a member of the Src family kinase (SFK) family, which comprises of proto-

oncogenes that play key roles in cell morphology, motility, proliferation, and survival. v-Src 

(a viral protein) is encoded by the chicken oncogene of the Rous sarcoma virus, and Src (the 
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cellular homologue) is encoded by a physiological gene, the first of the proto-oncogenes. 

From the N- to C-terminus, as demonstrated in Scheme 2, Src kinases contain an N-terminal 

14-carbon 

myristoyl 

group, a unique 

segment, an 

SH3 domain, an 

SH2 domain, a 

protein–tyrosine kinase domain, and a C-terminal regulatory tail (Roskoski, 2004). Src 

activity is regulated by a well-studied post-translational mechanism - tyrosine 

phosphorylation. The phosphorylation of different domains is responsible for the control of 

the kinase activity of this family of enzymes, bringing about a change in their conformation 

to activated or inhibited states (Boggon and Eck, 2004). The key sites that were identified to 

undergo these events were - Y529, which is 6 residues upstream of the C-terminus and Y417 

in the kinase domain. Phospho-Y-529 binds intramolecularly with the Src SH2 domain, 

keeping the kinase in a closed and inactive conformation. Y417, which occurs in the 

activation loop, is sequestered and is not a substrate for phosphorylation by another kinase. 

When phospho-Y-529 dissociates or is displaced from the SH2 domain, Y417 can be 

phosphorylated, usually by another Src kinase molecule. The phosphorylation of Y417 

residue is a key to several signaling events, activating Src kinases and enabling them to 

achieve high levels of kinase activity.  

The switch between phosphorylation dependent activation and inactivation of Src 

kinases is controlled by several cellular signaling molecules.  Csk (C-terminal src kinase) and 

Figure 5. Domain structure of Fyn kinase. 
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Chk (Csk homologous kinase) are two tyrosine kinases that are known to phosphorylate 

Y529 – the inhibitory tyrosine of SFK (Chong et al., 2005; Cole et al., 2003). Csk forms an 

inhibitory complex with Src through non-covalent interactions regardless of the 

phosphorylation state of Src (Chong et al., 2005).  

Signal transduction involving SFKs are initiated by ligand mediated as well as ligand-

independent pathways. Non-ligand mediated activation of SFKs involve several ROS species 

such as H2O2 and nitric oxide (Meurer et al., 2005; Yan and Berton, 1996), diamide 

(Nakamura et al., 1993), oxidized low-density lipoproteins (Maschberger et al., 2000), 

alkylating agents such as iodoacetamide (Devary et al., 1992), heavy metal ions such as 

mercury and arsenic (Soto-Pena and Vega, 2008) and X-rays (Kharbanda et al., 1994). 

Ligand mediated pathways such as coupling of T-cell receptors, Fc receptors and cytokine 

receptors have been shown to activate SFKs (Gilfillan and Rivera, 2009; Salmond et al., 

2009; Smith-Garvin et al., 2009). Fyn’s putative role in Alzheimer’s disease associated 

neurodegeneration has been a subject of intense scientific investigation for the past decade. 

Fyn kinase mediates the accumulation and redistribution of amyloid-β in the lipid rafts. This 

mechanism explained the accumulation of amyloid-β and tau and the key mechanism to 

amyloid-β derived diffusible ligand mediated neuronal death (Williamson et al., 2008). Fyn 

has also been shown to phosphorylate α-synuclein at tyrosine residue 125 (Nakamura et al., 

2001). However, the physiological or pathological implications of this phosphorylation and 

PD are yet to be investigated. It was recently demonstrated that amyloid-β oligomers bound 

to post-synaptic prion protein in neurons, activating Fyn and Fyn-mediated tyrosine 

phosphorylation of the NR2B subunit of the NMDA receptor, leading to cell death (Um et 

al., 2012). Fyn was also shown to directly phosphorylate Tau at tyrosine residue 18, 
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promoting its disassociation from microtubules and the formation of Tau fibrils (Lee et al., 

2004). Recently, we published a study that identified Fyn as the Src kinase that 

phosphorylates PKCδ at Y311 upon oxidative stress administration in dopaminergic neuronal 

cells, leaving it susceptible to caspase-3 mediated proteolytic cleavage (Saminathan et al., 

2011).  

 

Role of Fyn in immune signaling  

Early studies demonstrated that thymic Fyn plays a crucial role in mounting signaling 

responses in T cells in response to stimulation with antibodies raised against the TCR co-

receptor CD3 as well as mitogens (Appleby et al., 1992; Cooke et al., 1991). In mast cells, 

Fyn was found to associate with the FcεRI receptor, and mediate degranulation and pro-

inflammatory cytokine production (Furumoto et al., 2005). Subsequent research in this area 

showed that Fyn activation downstream of FcεRI activation fed into the JNK pathway, and 

NF-κB pathway activation, leading to the production of the pro-inflammatory cytokines IL-6 

and TNF-α, as well as the secretion of arachidonic acid. Interestingly, in a gene expression 

array used in the same study to identify transcripts whose levels were lower in stimulated 

Fyn-/- mast cells, the pro-IL-1β transcript was identified (Gomez et al., 2005). IL-1β is a 

cytokine associated with activation of inflammasomes, which will be the subject of the 

subsequent literature review. The hypersensitivity of Lyn deficient mast cells to stimulation 

was attributable to increased levels of Fyn mRNA and Fyn signaling (Hernandez-Hansen et 

al., 2005). With respect to mast cell degranulation, Fyn was shown to mediate Gab2 and Akt 

phosphorylation, feeding into PKCδ mediated degranulation (Parravicini et al., 2002). The 

anti-inflammatory activities of delphinidin, an anthocyanidin found in red wine and berries, 
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were attributed to its inhibition of Fyn kinase directly (Hwang et al., 2009). GPRC5B-

associated Fyn contributed to NF-κB activation in inflammatory signaling in adipocytes, 

leading to increased obesity and inflammation in murine adipose tissue (Kim et al., 2012). 

More recently, Fyn was also shown to mediate NF-κB pathway activation downstream of 

NKG2D and CD137 activation in natural killer cells, utilizing a signaling mechanism 

dependent on ADAP (Rajasekaran et al., 2013). The role of Fyn in neuroinflammation has 

been an active area of investigation, and studies have shown that CD36 associated Fyn and 

Lyn contribute to amyloid-β induced ROS generation and (Moore et al., 2002).  Fyn was also 

shown to regulate microglial migration via phosphorylation of p130Cas (Stuart et al., 2007). 

However, these studies were largely performed using peritoneal macrophages as substitutes 

for microglial cells. Microglia and macrophages have different origins and disparate gene 

expression profiles (Hickman et al., 2013).  Recent work also demonstrated that CD36 

contributes to pro-inflammatory cytokines in BV2 microglia post activation by neurotoxic 

prion protein fragment, and associates with Fyn to mediate its pro-inflammatory actions. 

However, the authors of this study did not directly show interaction of Fyn and CD36, 

(activation of Fyn was prevented using neutralizing antibody to CD36, providing 

circumstantial evidence for interaction) Moreover, the authors did not chemically or 

genetically inhibit/ reduce Fyn levels to show what role it might play in the process. Also, 

activation of Fyn was by a blot for activated Src family kinases, which does not distinguish 

between Fyn and other Src family kinases (Kouadir et al., 2012). 
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Protein kinase C delta (PKCδ) 

PKCδ was 

discovered by 

Geschwendt in 1986 and 

cloned from the rat 

brain cDNA library 

(Gschwendt et al., 1986). Classified under the AGC kinase family, twelve distinct PKC 

isoforms have been identified and grouped into three well-characterized sub-families. Based 

on their modes of activation, PKCs are classified as classical or conventional PKCs (α , βI, 

βII and γ ; cPKCs), novel PKCs (δ, θ, ε, η ; nPKC), and atypical PKCs (ζ and λ  (mouse)/ 

τ(human); aPKCs (Corbalan-Garcia and Gomez-Fernandez, 2006).  

All PKCs are composed of an N-terminal regulatory domain and C-terminal catalytic 

domain that is connected at the variable region - V3. cPKCs contain four conserved regions 

(C1-C4) and five variable regions (V1-V5). The structure of PKCδ is depicted in Scheme 1. 

The cPKCs are dependant on intracellular calcium concentrations and are activated by 

diacylglycerol (DAG), while nPKCs are activated by DAG and are calcium independent. The 

aPKCs don’t require either calcium or phospholipids for their activity (Kanthasamy et al., 

2003). PKCδ does not possess the C2-region that binds Ca2+ and therefore is calcium-

independent for its activity (Pappa et al., 1998). PKCδ has been implicated in cell 

differentiation, secretion and apoptosis. We have shown PKCδ is expressed in the rat and 

mouse substantia nigra and striatum (Yang et al., 2004; Zhang et al., 2007). PKCδ is 

activated by DAG binding to the regulatory domain and by translocation to the cell 

membrane and other sub-cellular organelles. Several apoptotic stimuli activate PKCδ in 

Figure 6. Domain structure of PKCδ 
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different cell types by post-translational modifications such as phosphorylation at 

serine/threonine and tyrosine residues. Ser-643, Thr-505, and Ser-662 are known to be 

phosphorylated, and influence PKCδ kinase activity (Kanthasamy et al., 2003).  

Proteolytic cleavage of PKCδ by caspase-3 in non-neuronal cell types in response to 

several apoptotic stimuli has been identified (Emoto et al., 1995; Ghayur et al., 1996; 

Koriyama et al., 1999; Leverrier et al., 2002; Sitailo et al., 2006). Studies from our group 

demonstrated that PKCδ is proteolytically cleaved by caspase-3 in response to numerous 

apoptotic stimuli in neuronal models to yield a 41 kD catalytically active and a 38 kD 

regulatory fragment. This results in increased activity of the kinase. We have also shown that 

prevention of the proteolytic activation of PKCδ rescues the dopaminergic neurons from 

apoptosis (Kitazawa et al., 2003; Kitazawa et al., 2005; Kitazawa et al., 2002; 

Latchoumycandane et al., 2005; Sun et al., 2005). The pro-apoptotic role of PKCδ in 

experimental PD models is well-established finding and understanding the mechanisms of 

activation of this kinase presents with a novel molecular candidate in the intervention of PD 

progression. Tyrosine phosphorylation of PKCδ and caspase-3 dependant cleavage during 

apoptotic stimuli are the key determinants of its pro-apoptotic function. Moreover, 

preincubation of the neuronal cells with both, a broad specific kinase inhibitor, and a Src 

kinase inhibitor, prevented Y311 phosphorylation and cleavage of PKCδ, thereby rescuing 

the cells from apoptosis (Kaul et al., 2005).  

 

Role of PKCδ in immune signaling 

PKCδ has been found to contribute to pro-inflammatory signaling in several cell 

types; In monocytes, LPS treatment caused the cytosol to membrane translocation of PKCδ . 
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Pharmacological inhibition of PKCδ by Rottlerin, a chemical inhibitor, attenuated the 

production of TNFα and IL-1β via diminishing the DNA binding activity of the transcription 

factor AP-1 (Kontny et al., 2000). Staphylococcus aureus peptidoglycan mediated nitrite 

production in macrophages was diminished by inhibition of PKCδ (Bhatt et al., 2011). A 

mechanistic investigation into how PKCδ might mediate its pro-inflammatory activities 

showed that it interacted with the TLR adaptor protein TIRAP via its TIR domain (Kubo-

Murai et al., 2007).  PKCδ-/- macrophages showed diminished cytokine and nitrite levels 

when stimulated with LPS/IFNγ, with or without co-infection with Leishmania major (Guler 

et al., 2011). It was also shown to mediate the LPS mediated induction of the sepsis effector 

soluble fms-like tyrosine kinase-1 receptor in macrophages (Lee et al., 2008). Genetic 

knockdown of PKCδ via sh-RNA resulted in reduced oxidized LDL (OxLDL) uptake and the 

intracellular accumulation of cholesterol in THP-1 monocyte derived macrophages as well as 

primary macrophages, leading to CD36 upregulation and foam cell formation (Lin et al., 

2012). In vascular smooth muscle cells, PKCδ interacted with the p65 subunit of the NF-κB 

subunit, and mediated S536 phosphorylation (Ren et al., 2014). In dendritic cells, it was 

found to contribute to antigen presentation and activation (Majewski et al., 2007). PKCδ 

mediates Cd11b expression and MMP release in eosinophils (Langlois et al., 2009).  It also 

mediates the activation of the NAPDH oxidase and the ROS production in response to COS-

7 cell stimulation (Cheng et al., 2007). In a model of sepsis, a PKCδ inhibitor peptide treated 

mice had reduced levels of several pro-inflammatory chemokines in lung and blood samples.  

There was also a concurrently diminished infiltration of inflammatory cells into the lungs, 

and alleviated pulmonary edema (Kilpatrick et al., 2011). PKCδ inhibited the anti-apoptotic 

signaling mediated by TNFα in neutrophils (Kilpatrick et al., 2002). In human bronchial 
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epithelial cells, PKCδ was shown to participate in NF-κB activation and IL-8 release 

(Cummings et al., 2004). PKCδ deficient mice that were exposed to asbestos showed 

diminished accumulation of several pro-inflammatory cytokines in their lung fluid, as well as 

a reduced infiltration of immune cells within the lung (Shukla et al., 2007). Specifically with 

regards to neuroinflammation, chemical inhibition of PKCδ prevented NF-κB activation and 

nitrite generation in microglia (Kim et al., 2005). PKCδ has been shown to mediate 

neuroinflammatory responses to LPS and IFNγ in microglial cells (Shen et al., 2005). 
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Background and Literature Review – II 

Inflammasomes and their role in neurodegenerative diseases 

A major role of the innate immune system is to recognize tissue damage that occurs 

as the result of an injury, requiring clearance of cell debris and dead cells. Invading 

pathogens need to be eliminated and cleared. The innate immune system does this by the 

means of receptors that recognize both, modified self-molecules, as well as foreign molecules 

(Kato et al., 2011; Kawai and Akira, 2011). Inflammasomes are a crucial arm of the innate 

immune system. First described by Tschopp in the early 2000s, inflammasomes are large, 

cytosolic multimeric assembly platforms that effect the activation of pro-inflammatory 

caspases such as Caspase-1.  These complexes comprise of an inflammasome sensor 

receptor, the adaptor protein ASC, and Caspase-1, which upon receiving the appropriate 

stimulus cleaves itself into the active p20 form, which in turn cleaves inflammatory pro-

cytokines into their mature secretable form. The 2 major cytokines that are released upon 

inflammasome activation are IL-1β and IL-18 (Martinon et al., 2002). Concurrently, 

inflammasomes also bring about a rapid, pro-inflammatory form of cell death called 

pyroptosis (Miao et al., 2011). 

Inflammasome biology is an extremely active area of research; as pattern recognition 

receptors such as cytosolic inflammasome receptors are identified, the cellular signaling 

processes that occur downstream of their activation are being elucidated. Although 

inflammasomes play a crucial role in mounting innate immune responses to potential 

pathogens, recent discoveries have shed light on how their signaling goes awry in a whole 

host of diseases such as atherosclerosis, type 2 diabetes, and Alzheimer’s disease. Recent 

compelling evidence has suggested that inhibiting inflammasomes could protect against 
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many of the aforementioned diseases, which have an immune hyperactivation component.  

 

Structure of major inflammasome components 

The components of the major 

studied inflammasomes are shown in 

Figure 7, (adapted from Lamkanfi and 

Dixit, 2014). 

1. Cytosolic receptors  

Inflammasome receptors 

belong to the class of pattern 

recognition receptors that reside in the 

cytoplasm, and include the nucleotide 

binding domain and Leucine-rich 

repeat containing receptors (NLRs) 

(Takeuchi and Akira, 2010) and the 

AIM-2 like receptors (ALRs). NLRs, such as NLRP3, NLRP1b and NLRC4 contain a 

NACHT domain and variable number of Leucine-rich repeat domains (LRR). NLRP3 and 

AIM2 contain pyrin domains, through which they interact with the pyrin domains of ASC. 

The NACHT domains possess ATPase activity, and may contribute to the oligomerization of 

inflammasome complexes, and the LRRs may facilitate ligand interaction. NLRP1b and 

NLRP3 have Caspase activation and recruitment domains (CARD), through which they can 

directly activate Caspase-1. However, the presence of ASC can stabilize and increase the 

efficiency of these inflammasomes (Mariathasan et al., 2004; Proell et al., 2013). The NLRP1 

Figure 7. The major studied inflammasomes. 
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inflammasome has a function to find domain (FIIND), and seems to require auto-proteolysis 

within this domain in order to become active (D'Osualdo et al., 2011; Finger et al., 2012).  

2. The adaptor molecule ASC  

ASC is an adaptor protein encoded by the PYCARD gene. It interacts with the 

cytosolic inflammasome receptors via its pyrin domain. This interaction facilitates the 

condensation of the cytosolic ASC into large specks, which mostly comprise of multimers of 

ASC dimers (Fernandes-Alnemri et al., 2007).  In ASC overexpressing cells, the pool of ASC 

coalesces into a single large speck following inflammasome activation and assembly. 

3. Caspase-1  

Caspase-1 is recruited to the inflammasome assembly via ASC, by the means of its 

CARD. Two monomers of Caspase-1 are brought close to each other, and this results in the 

self-cleavage and consequent activation of Caspase-1. Active Caspase-1 cleaves the pro-

cytokines pro-IL-1β and pro-IL-18 into their mature forms, following which they are 

secreted from the cell (Gu et al., 1997; Thornberry et al., 1992). 

Caspase-11 can also bring about the cleavage of pro-IL-1β through non-canonical 

inflammasome activation, and it is activated by a hitherto unknown receptor. 

The major studied inflammasomes are: 

1. The NLRC4 inflammasome  

Expressed mainly in cells that are hematopoietic in origin, NLRC4 can directly 

activate Caspase-1 through its CARD. Deletion of the LRR domain results in excessive 

Caspase-1 activation, indicating that the LRR may have an inhibitory function to prevent 

hyperactivation of the inflammasome (Poyet et al., 2001). The NLRC4 inflammasome has 

been found to play a role in host response to microbial infection. Infection of murine 
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macrophages with Shigella brings about dual activation of both the NLRC4 and NLRP3 

inflammasomes (Suzuki et al., 2007; Willingham et al., 2007), showing that multiple NLRs 

might respond to the same microorganism, but recognize disparate bacterial products. The 

NLRC4 mediated response to these pathogens is dependent on ASC, evidenced by the 

finding that ASC deficient macrophages produce significantly less IL-1β and IL-18. 

However, ASC is not required for NLRC4 dependent pyroptotic cell death. The major 

bacterial activator of the NLRC4 inflammasome was shown to be flagellin (Franchi et al., 

2006; Miao et al., 2006). However, responses to Shigella were found to be NLRC4 

dependent even though Shigella lacks flagellin, but these apparent discrepancies can be 

explained by the fact that certain rod protein components in microorganisms can serve as 

activators of the NLRC4 inflammasome (Miao et al., 2010). The posttranslational 

modifications that govern NLRC4 activation are largely unstudied. One notable exception is 

the study that showed how NLRC4 serine 533 phosphorylation mediated by PKCδ is 

strongly required for NLRC4 inflammasome activation (Qu et al., 2012). 

2. The NLRP1 inflammasome  

NLRP1 is expressed on adaptive immune cells as well as other cell types, including 

neurons. The first discovered activator of the NLRP1 inflammasome thus far is the major 

toxin from Bacillus anthracis, Lethal toxin (LT). This discovery stemmed from the 

observation that certain strains of mice with polymoprhisms for the NLRP1b gene were more 

susceptible to LT (Boyden and Dietrich, 2006). This lead to the discovery of the NLRP1b 

inflammasome, which is a membrane-associated inflammasome that mediates the LT 

induced production of IL-1β and IL-18. NLRP1 has a CARD domain through which it can 

recruit and activate Caspase-1 without ASC (Nour et al., 2009), although studies have shown 
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that ASC presence can increase the efficiency of the inflammasome (Faustin et al., 2007). 

The NLRP1 inflammasome is unique in its requirement for muramyl di-peptide for its 

assembly. Its assembly was also found to require K+ efflux from the cell and lysosomal 

cathepsin B release, and these requirements for activation are shared by the NLRP3 

inflammasome as well. 

3. The AIM2 inflammasome  

This is the only inflammasome described here that does not comprise of a NLR as its 

cytosolic receptor. AIM2 was initially identified in a tumor screen for melanoma (DeYoung 

et al., 1997). It was later identified as an inflammasome receptor (Hornung and Latz, 2010). 

AIM2 contains an N terminal pyrin domain, which is utilized for interactions with ASC, and 

a C terminal HIN200 domain. The latter binds to double stranded DNA. AIM2 

inflammasome activation occurs through DNA binding, and the ds-DNA- AIM2 complex 

then recruits ASC, and Caspase-1. The AIM2 inflammasome does not sense the origin of 

DNA as self or non-self, but instead detects the presence of cytosolic DNA to become 

activated. Owing to these properties, this inflammasome was thought to play a role in the 

response to microorganisms that invade the cells. In favor of this hypothesis, Aim1-/- 

macrophages display diminished IL-1β and IL-18 production in response to vaccinia and 

mouse cytomegalovirus (Fernandes-Alnemri et al., 2010; Rathinam et al., 2010). 

4. The NLRP2 inflammasome  

NLRP2 is a NLR that was found to inhibit the NF-κB pathway and subsequent TNFα 

production in macrophages, whilst simultaneously contributing to the production of IL-1β 

through ASC (Bruey et al., 2004; Conti et al., 2005). Intriguingly, the expression of NLRP2 

itself was found to be mediated by p65- NF-κB, in what might constitute a negative feedback 
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loop that limits NF-κB activation (Fontalba et al., 2007). Even though limited studies exist 

on this inflammasome, it may have clinical relevance; a functional and unique NLRP2 

inflammasome was discovered in astrocytes, which will be discussed in the subsequent 

section. 

5. The NLRP3 inflammasome  

The NLRP3 inflammasome is the best-characterized and most widely studied 

inflammasome. It is unique among other inflammasomes, in that the basal levels of NLRP3 

are low in 

‘resting’ cells 

such as 

macrophages or 

microglia.  

Activation of 

this 

inflammasome 

is a two-step 

mechanism, 

and is summarized in Figure 8.  It is hypothesized that this two-step activation mechanism 

provides a checkpoint to prevent uncontrolled release of IL-1β. The first step, priming, is 

required to increase the levels of pro-IL-1β and NLRP3. The TLR ligand LPS and the 

TNFR1 ligand TNFα are adept at mediating this induction via activation of the NF-κB 

pathway (Bauernfeind et al., 2009). The nature of the second step, which induces the 

Figure 8. Dual signal activation mechanism of the NLRP3 inflammasome. 
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assembly of the inflammasome, is strongly contested. However, the generally accepted 

consensus is that mitochondrial dysfunction and mito-ROS generation, along with lysosomal 

disruption, play a role in the process. K+ efflux is also important for optimal activation to 

occur. The NLRP3 inflammasome is activated by a huge variety of molecules, calling into 

question whether it really is a receptor at all, or if it reacts to changes in the cytosol as a 

result of mitochondrial or lysosomal disruption. In support of this notion, mitochondrial 

toxicants can bring about activation of NLRP3 inflammasome dependent responses in 

macrophages (Zhou et al., 2011). Many of the early discovered activators of the NLRP3 

inflammasome were non-self in origin. Crystalline and particulate substances in particular, 

can contribute to the sterile inflammation mediated by the NLRP3 inflammasome. Examples 

of such substances include asbestos and silica (Cassel et al., 2008; Dostert et al., 2008; 

Hornung et al., 2008). Of note, NLRP3 deficient mice are protected from asbestos and silica 

induced neutrophil infiltration, pro-inflammatory cytokine generation and cell death 

(Hornung et al., 2008). Metal alloy particles from prosthetic joints were also found to 

activate the NLRP3 inflammasome (Caicedo et al., 2009).  The NLRP3 inflammasome is 

also activated in response to several microorganism pathogens. Staphylococcus aureus 

hemolysin (Craven et al., 2009; Munoz-Planillo et al., 2009), listerialysin from Listeria 

monocytogenes (Meixenberger et al., 2010) and tetanolysin-O from Clostritidium tetani (Chu 

et al., 2009) have all been demonstrated to elicit NLRP3 inflammasome activation, as have 

ds-RNA molecules from the influenza virus (Ichinohe et al., 2009). The NLRP3 

inflammasome is thought to play a supportive role during DNA virus infection (Delaloye et 

al., 2009; Muruve et al., 2008). Fungal toxins and the malarial toxin Hemozoin also elicit the 

activity of the NLRP3 inflammasome, probably through the activation of the tyrosine kinase 
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SYK (Joly et al., 2009; Shio et al., 2009). The NLRP3 inflammasome can also be activated 

by many self-moieties, which are generally crystalline or aggregated, and are associated with 

cell death, danger, and inflammation. Extracellular ATP, which is probably mitochondrial in 

origin, is a danger associated molecular pattern (DAMP), which acts as a potent danger 

signal to activate the NLRP3 inflammasome (Iyer et al., 2009). This activation is dependent 

on the K+ efflux mediated by the P2X7 receptor. Uric acid, a byproduct of purine biogenesis 

forms crystalline urate crystals when deposited into the extracellular space. Chronic urate 

crystal deposition in the joints is a hallmark of the disease gout. This deposition is 

accompanied by the secretion of various pro-inflammatory cytokines, including IL-1β and 

IL-18 (Martinon, 2010).  When phagocytosed by macrophages, the crystals activate the 

NLRP3 inflammasome, which contributes to disease pathology. In strong evidence of the 

role that NLRP3 plays in the disease process, patients who suffered from acute gout showed 

symptomatic relief in clinical trials when treated with Anakinra, which is an interleukin-1 

receptor antagonist. Another well studied activator of the NLRP3 inflammasome that has 

great clinical relevance is crystalline cholesterol; It was observed that cholesterol crystal 

deposition contributed to macrophage infiltration, chronic inflammation and plaque 

development but did so to a lesser extent under conditions of NLRP3 inflammasome 

inactivation (Duewell et al., 2010). Hyaluronan is a component of the extra-cellular matrix 

and is also found in the bacterial cell walls. In its polymeric form, it can activate the NLRP3 

inflammasome (Yamasaki et al., 2009). During traumatic injuries, a plethora of 

inflammasome activators such as ATP, hyaluronan and uric acid can be released which can, 

in concert, bring about massive inflammation via NLRP3 inflammasome activation (Gasse et 

al., 2009; Idzko et al., 2007; Muller et al., 2011; Nakae et al., 2003; Riteau et al., 2010). 
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Cryopyrin-associated periodic syndromes (CAPS) are a set of autoimmune diseases that are 

used to describe three phenotypes depending on the severity of the disease; familial cold 

autoinflammatory syndrome (FCAS), the mildest phenotype, Muckle-Wells syndrome 

(MWS) with intermediate severe disease phenotype, and neonatal-onset multisystem 

inflammatory disease (NOMID), which is the severest form of the disease. CAPS is an 

autosomal dominant condition, caused by a gain of function mutation in the NLRP3 gene, 

leading to the uncontrolled production of IL-1β in immune cells. In the past few years, 

several drugs to treat this disease have been effectively utilized (Yu and Leslie, 2011). In 

2008, it was discovered for the first time that the aggregated form of the senile plaque 

associated protein amyloid-β could activate the NLRP3 inflammasome. This was the first 

time a misfolded protein was demonstrated to activate the NLRP3 inflammasome, and was 

the first link that inflammasomes may play a role in the pathogenesis of neurodegenerative 

disorders (Halle et al., 2008). This topic will be covered in more detail in the subsequent 

section. 

6. Non-canonical inflammasomes  

Activation of the non-canonical inflammasomes is primarily mediated by Caspase-11. 

This was protein was shown to mediate the activation of other Caspases, contributing to 

apoptosis (Kang et al., 2000). Caspase-11 was subsequently demonstrated to be essential for 

Caspase-1 activation and IL-1β production upon infection with Escherichia coli, Citrobacter 

rodentium or Vibrio cholerae, but was found to not affect the activation of Caspase-1 

downstream of typical NLRP3 activators such as ATP and urate crystals (Kayagaki et al., 

2011). Incidentally, this was also the study that demonstrated that Caspase1-/- mice inherently 

lacked Caspase-11 as well, necessitating the use of Caspase-11-/- macrophages as negative 
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controls for inflammasome activation in many studies, including ours. It was later discovered 

that the non-canonical activation of this inflammasome occurred independent of TLR4, 

leading to the current consensus that a cytosolic receptor mediates Caspase-11 activation to 

elicit non-canonical inflammasome activation (Kayagaki et al., 2013). 

7. The NLRP6 inflammasome  

Although included in this section, current evidence has not yet conclusively identified 

the protein NLRP6 as being part of an inflammasome complex; evidence needs to be 

provided showing that it associates with procaspase-1 directly and mediates the processing of 

pro-IL-18 and/or pro-IL-1β. NLRP6 was found to associate with ASC and effect NF-κB and 

Caspase-1 activation in a model system that utilized overexpression of the protein to validate 

the findings (Grenier et al., 2002). Recent studies have expounded a role for this 

inflammasome in colitis; NLRP6-/- mice are more susceptible to colitis in response to colitis 

inducing agents (Chen et al., 2011; Elinav et al., 2011; Normand et al., 2011). In fact, one 

study showed that NLRP6-/- mice have spontaneous colitis and inflammatory cell recruitment, 

as well as amplified inflammatory responses to dextran sodium sulfate (DSS), an inducer of 

colitis like symptoms, as well as expanded pathobiont gut microbiota. This points to a role of 

the NLRP6 inflammasome in serving as a checkpoint to prevent gut inflammation (Elinav et 

al., 2011). Related studies also showed that NLRP6 is expressed in myofibroblasts, and its 

absence triggered colitis and tumorigenesis, accompanied by dysregulated regeneration of the 

colonic mucosa However, IL-1β levels were not significantly altered. (Normand et al., 2011)  

NLRP6 deficiency enhanced MAP kinase and NF-κB pathways downstream of TLR 

activation, leading to increased levels of cytokine and chemokine production (Nigam and 

Narula, 1990). 
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Role of inflammasomes in neurodegenerative disorders 

1. The NLRC4 inflammasome  

As mentioned previously, NLRC4 mainly recognizes bacterial pathogen associated 

molecular patterns (PAMPs). This makes the NLRC4 inflammasome the primary CNS 

responder to bacterial infections of the brain that cause meningitis and encephalitis 

(Jamilloux et al., 2013; Wu et al., 2010). As in peripheral bacterial infections, the NLRC4 

inflammasome senses the presence of flagellin, as well as PrgJ (Miao et al., 2006; Miao et 

al., 2010).  Recent evidence suggests, however, that this sensing may be mediated indirectly; 

neuronal apoptosis inhibitory proteins (NAIPs) first detect the bacterial proteins, and may 

then subsequently interact with NLRC4 to mediate inflammasome activation (Kofoed and 

Vance, 2011; Zhao et al., 2011).  

2. The NLRP1 inflammasome  

Interaction studies carried out on the NLRP1 inflammasome showed that the anti-

apoptotic proteins BCL-2 and BCL-X could bind to and subsequently inhibit NLRP1 

activation (Bruey et al., 2007). The NLRP1 inflammasome was subsequently shown to be 

activated in neurons (de Rivero Vaccari et al., 2009; de Rivero Vaccari et al., 2008; 

Silverman et al., 2009). Recent studies have demonstrated that neuronal NLRP1 mediates 

pyroptosis in response to β-amyloid treatment (Tan et al., 2014).  It was also demonstrated 

that there was a massive upregulation of NLRP1 containing neurons in AD brains versus 

controls, and that the functional NLRP1 inflammasome in these cells could activate Caspase-

1 and Caspase-6, and the processing of IL-1β in neurons (Kaushal et al., 2015). Hence, 

activation of the NLRP1 inflammasomes in neurons may identify a novel cell death pathway 

that mediates neuronal loss in AD.  Circumstantial evidence for this hypothesis comes from 
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studies that have linked NLRP1 variants with AD development (Pontillo et al., 2012). 

NLRP1 might also contribute to the pathogenesis of stroke, evidenced by the finding that 

administering neutralizing antibodies against NLRP1b was found to be protective in a stroke 

model (Abulafia et al., 2009). Middle cerebral artery occlusion in rats induces NLRP1 

expression (Frederick Lo et al., 2008), and increased NLRP1b  in the cerebrospinal fluid  is 

associated with a poorer prognosis in patients with traumatic brain injuries (Adamczak et al., 

2012).  

3. The AIM2 inflammasome  

The AIM2 inflammasome has not been studied in the central nervous system. 

However, it is hypothesized that it might play a role in CNS infections (Walsh et al., 2014), 

since within the peripheral immune system, it binds to ds-DNA from Listeria 

monocytogenes, which can cause meningitis (Wu et al., 2010). 

4. The NLRP2 inflammasome  

Stimulation of astrocytes with ATP resulted in the activation of the NLRP2 

inflammasome, the activation of which was inhibited by the pannexin inhibitor probenecid 

and the P2X7 receptor antagonist Brilliant Blue G (Minkiewicz et al., 2013). The clinical 

significance of the activation of this inflammasome is not known. 

5. The NLRP3 inflammasome 

a. Role in brain infections- Activation of the NLRP3 inflammasome can have 

disparate consequences inside or outside the CNS; in a mouse model of Streptococcus 

pneumoniae induced pneumonia, the NLRP3 response had a beneficial effect and was 

required for clearance of the pathogen (McNeela et al., 2010). However, in a 

meningitis model that utilized the same pathogen, activation of the NLRP3 
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inflammasome and pro-inflammatory cytokine secretion had a detrimental effect 

(Hoegen et al., 2011; Mitchell et al., 2012). In response to the Japanese Encephalitis 

Virus (JEV) and West Nile Virus (WNV) infections, activation of the NLRP3 

inflammasome is protective (Kaushik et al., 2012; Kumar et al., 2013; Ramos et al., 

2012). 

b. Role in sterile brain inflammatory responses: Unlike its role in CNS 

infections, activation of the NLRP3 inflammasome in sterile inflammatory responses 

within the CNS has mostly been shown to be detrimental. In mouse models of 

experimental autoimmune encephalitis (EAE), activation of the NLRP3 

inflammasome was demonstrated to be critical to disease progression (Gris et al., 

2010; Inoue et al., 2012). Inhibiting the action of the NLRP3 inflammasome 

prevented T-cell infiltration into the CNS.  Treatment regimen with a small molecular 

inhibitor of the NLRP3 inflammasome, MCC950, was found to be protective in an 

EAE mouse model (Coll et al., 2015).  

Many neurodegenerative disorders are propagated by misfolded proteins which can activate 

the innate immune system (Glass et al., 2010).  As mentioned previously, fibrilar amyloid-β 

was the first misfolded/aggregated protein shown to activate the NLRP3 inflammasome.  In a 

subsequent study, it was shown that NLRP3 and Caspase-1 deficient mice were massively 

protected against the Alzheimer’s Disease (AD) pathology, when crossed to the APP/PS1 

transgenic mice. The same study also demonstrated increased Caspase-1 and IL-1β levels 

under APP/PS1 and AD conditions (Heneka et al., 2013). Misfolded prion protein fibrils 

were also shown to activate the NLRP3 inflammasome (Hafner-Bratkovic et al., 2012).  In 

the field of PD biology, the aggregated form of α-synuclein was shown to effect the 
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production of IL-1β in monocytes (Codolo et al., 2013). However, this study used monocytes 

as cell culture model system, which, unlike microglia and macrophages, have constitutively 

activated Caspase-1 (Netea et al., 2009), and hence any stimulus that primes the NLRP3 

inflammasome will also bring about inflammasome activation, without the need for an 

intervening signal-2. Thus, we question the relevance of using a model system that does not 

take into consideration all the factors that engender inflammasome activation. Moreover, 

there was no direct evidence, either by specific chemical inhibition, or by genetic knockdown 

of NLRP3 specifically being involved. There is some evidence to suggest that 

inflammasomes may play a role in-vivo. Overexpression of α-synuclein within the SN 

effected increased IL-1β levels in the striatum. However, inflammasomes were not directly 

implicated (Chung et al., 2009). Lastly, increased levels of the cytokine IL-1β have been 

found in PD brain and CSF levels (Mogi et al., 1996; Mogi et al., 2000). Recently, NLRP3-/- 

mice were demonstrated to be resistant to MPTP induced dopaminergic neuronal cell loss 

and serum IL-1β secretion, but this protection was attributed to the inherent inhibitive effect 

dopamine has on NLRP3 inflammasome activity (Yan et al., 2015). Hence, to conclude, 

activation of the NLRP3 inflammasome may play a role in the development of several 

neurodegenerative disorders that have a sterile inflammatory component to them. 

 

Inflammasomes: Beyond the role of IL-1β 

IL-1β is a versatile cytokine; it can elicit a proinflammatory response from immune 

cells such as microglia and macrophages (Basu et al., 2002; Jayaraman et al., 2013), as well 

as from astrocytes (John et al., 2004). It can also directly elicit cell death in neurons through 

p38 MAP kinase activation (Wang et al., 2005). However, the significance of NLRP3 
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inflammasome activation may extend beyond IL-1β processing and secretion. It was recently 

demonstrated that upon NLRP3 inflammasome activation, oligomeric forms of the NLRP3 

inflammasome were released from the cell, where they were able to activate Caspase-1 in 

non-activated cells extracellularly. Oligomeric ASC particles were found in the serum of 

patients with CAPS (Baroja-Mazo et al., 2014).  In a study that was simultaneously 

published, specks of ASC released by cells could take up and seed the nucleation of soluble 

ASC in unactivated cells, thereby contributing to inflammasome activation and the spreading 

of inflammation in a prionid manner (Franklin et al., 2014). 
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CHAPTER 2. FYN KINASE REGULATES MICROGLIAL NEUROINFLAMMATORY 
RESPONSES IN CELL CULTURE AND ANIMAL MODELS OF PARKINSON’S 

DISEASE1 
 

Modified from a paper published in the Journal of Neuroscience. 
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Abstract 

Sustained neuroinflammation mediated by resident microglia is recognized as a key 

pathophysiological contributor to many neurodegenerative diseases, including Parkinson’s 

disease (PD), but the key molecular signaling events regulating persistent microglial 

activation have yet to be clearly defined. In the present study, we examined the role of Fyn, a 

non-receptor tyrosine kinase in microglial activation and neuroinflammatory mechanisms in 

cell culture and animal models of PD. The well-characterized inflammogens 

lipopolysaccharide (LPS) and tumor necrosis factor alpha (TNFα) rapidly activated Fyn 

kinase in microglia. Immunocytochemical studies revealed that activated Fyn preferentially 

localized to the microglial plasma membrane periphery and the nucleus. Furthermore, 
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activated Fyn phosphorylated PKCδ at tyrosine residue 311, contributing to an inflammogen-

induced increase in its kinase activity. Notably, the Fyn-PKCδ signaling axis further 

activated the LPS- and TNFα-induced MAP kinase phosphorylation and activation of the 

NFκB pathway, implying that Fyn is a major upstream regulator of the pro-inflammatory 

signaling. Functional studies in microglia isolated from wild type (Fyn+/+) and Fyn knockout 

(Fyn-/-) mice revealed that Fyn is required for the pro-inflammatory responses, including 

cytokine release as well as iNOS activation. Interestingly, a prolonged inflammatory insult 

induced Fyn transcript and protein expression, indicating that Fyn is upregulated during 

chronic inflammatory conditions. Importantly, in vivo studies using MPTP, LPS, or 6-OHDA 

models revealed a greater attenuation of neuroinflammatory responses in Fyn-/- and PKCδ -/- 

mice when compared to wild-type mice. Collectively, our data demonstrate that Fyn is a 

major upstream signaling mediator of microglial neuroinflammatory processes in PD.  

 

Introduction 

Parkinson’s disease (PD) is a highly prevalent neurodegenerative disorder and is 

mainly characterized by the loss of dopaminergic neurons in the substantia nigra (SN) of the 

ventral midbrain region. Extra nigral lesions and non-motor deficits have recently been 

recognized (Chaudhuri et al., 2006; Bohnen et al., 2014). Although the etiopathogenesis of 

PD is not known, both environmental insults and genetic defects have been implicated in its 

onset. Mutations in seven disparate genes have been linked to Parkinsonism, which clinically 

resembles PD with varying onset and disease progression. Additionally, 19 other genes have 

been postulated to have a disease-causing role (Puschmann, 2013). 
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The pathophysiology of PD is complex and multifactorial, with mitochondrial 

dysfunction, oxidative stress, apoptosis and proteasomal dysfunction, being identified among 

others as potential disease mechanisms underlying nigrostriatal dopaminergic neuronal 

degeneration (Przedborski, 2005; Jenner and Olanow, 2006; Olanow, 2007; Levy et al., 

2009). Recently, a wealth of data from cell culture, animal models and post-mortem analyses 

of human PD brains have established chronic, sustained microglia-mediated 

neuroinflammation as being a major event in the delayed and progressive loss of 

dopaminergic neurons within the SN (Imamura et al., 2003; Block et al., 2007; Glass et al., 

2010; Tansey and Goldberg, 2010). As the macrophagic cells of the central nervous system 

(CNS), microglia comprise a major component of the brain’s innate immune system. Under 

‘normal’ physiological conditions, they produce anti-inflammatory and neurotrophic factors 

to promote neuronal survival and plasticity (Carson, 2002). However, when they encounter a 

potential pathogen, a dead or dying neuron or neurotoxic stress, they switch to an ‘activated’ 

phenotype, producing pro-inflammatory cytokines and chemokines, reactive nigtrogen 

species, and reactive oxygen species. Activated microglia may also directly contribute to cell 

death by phagocytizing dopaminergic neurons (Barcia et al., 2012; Virgone-Carlotta et al., 

2013). Thus, the pathophysiology of PD is accompanied by a sustained pro-inflammatory 

microglial response that contributes to neuron death, thereby exacerbating disease 

progression. 

Fyn, a member of the Src family of kinases, is a non-receptor tyrosine kinase 

expressed in the brain. The kinase has been shown to play a role in amyloid-mediated 

apoptosis in cortical neurons (Lambert et al., 1998), astrocyte migration (Dey et al., 2008) 

and oligodendrocyte differentiation (Sperber et al., 2001). In the peripheral immune system, 
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Fyn plays a role in mast cell and B/T cell activation (Palacios and Weiss, 2004; Gomez et al., 

2005a). Fyn was shown to mediate pro-inflammatory mediator production in mast cells, 

macrophages, basophils as well as in natural killer cells (Rajasekaran et al., 2013). Fyn was 

shown to be activated following fibrillar β-amyloid peptide engagement of its receptor 

CD36, contributing to activation and migration of primary murine peritoneal macrophages 

(Moore et al., 2002; Stuart et al., 2007), and in BV2 microglial cells stimulated with the 

neurotoxic fragment of prion protein (Kouadir et al., 2012). Recently, we have identified a 

pro-apoptotic Fyn/PKCδ-mediated signaling pathway that contributes to oxidative stress-

induced cell death in dopaminergic neurons (Kaul et al., 2005; Saminathan et al., 2011). 

However, the role of Fyn in microglial activation and neuroinflammation has never been 

studied in PD. Therefore, we sought to characterize the role of the Fyn-PKCδ signaling 

pathway in microglial activation and neuroinflammation in cell culture and animal models of 

PD. The results from these comprehensive studies reveal that Fyn kinase plays a key role in 

microglial activation and sustained neuroinflammation in the nigral dopaminergic system.  

 

Materials and Methods 

Chemicals and reagents 

Dulbecco’s modified Eagle’s medium/F-12 (DMEM/F-12), ascorbic acid, RPMI, 

fetal bovine serum (FBS), L-glutamine, Hoechst nuclear stain, penicillin, streptomycin and 

other cell culture reagents were purchased from Invitrogen (Gaithersburg, MD). 

Recombinant TNFα was purchased from Peprotech (Rocky Hill, NJ), and LPS (E. coli 

0111:B4, Endotoxin content 6.6000000 EU/mg) and 6-OHDA were purchased from Sigma 

(St. Louis, MO). The mouse Fyn antibody was purchased from Thermo Scientific (Waltham, 
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MA). Antibodies for rabbit Fyn, PKCδ, p-Y311 PKCδ, IκBα, Lamin-B, NOS2 (iNOS) and 

mouse Tubulin were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). 

Antibodies against rabbit p-Src family kinase Y416 (p-Y416 SFK), native p65, p-p38 MAP 

kinase, native p38 MAP kinase, p-p44/42 MAP kinase (p-ERK) and native p44/42 MAP 

kinase (ERK) were purchased from Cell Signaling (Beverly, MA). The gp91phox antibody was 

purchased from BD Biosciences (San Jose, CA). The mouse GFAP antibody was purchased 

from Millipore (Billerica, MA). The TH antibody was purchased from Chemicon (Temecula, 

CA). Mouse M2 FLAG and β-actin antibodies, as well as the rabbit β-actin antibody were 

purchased from Sigma. Rabbit and goat Iba-1 antibodies were purchased from Wako 

Chemicals (Richmond, VA) and Abcam (Cambridge, MA), respectively. The goat TNFα 

antibody was purchased from R&D Systems (Minneapolis, MN). 32P-ATP was purchased 

from Perkin Elmer (Boston, MA) and the histone substrate from Sigma. The Bradford protein 

assay kit was purchased from Bio-Rad Laboratories (Hercules, CA). FLAG-tagged human 

WT Fyn and Y417A mutant Fyn constructs were obtained as described previously (Kaspar 

and Jaiswal, 2011).  

 

Animal studies  

The Fyn-/- and PKCδ-/- mice used in these studies were bred in our animal facility. 

Fyn-/- mice were originally obtained from Dr. Dorit Ron’s laboratory at the University of 

California, San Francisco and are available from Jackson Laboratory (stock number 002271). 

PKCδ-/- mice were obtained originally from Dr. Keiichi Nakayama's laboratory (Division of 

Cell Biology, Department of Molecular and Cellular Biology, Medical Institute of 

Bioregulation, Kyushu University, Fukuoka, Japan). Wild type (Fyn+/+ and PKCδ+/+), PKCδ-/- 
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and Fyn-/- mice were housed under standard conditions of constant temperature (22 ± 1°C), 

humidity (relative, 30%), and a 12-h light cycle with food and water provided ad libitum. 

Six- to eight-week-old male mice were used for all studies. The well-characterized acute 

MPTP mouse model of PD (Wu et al., 2003; Przedborski et al., 2004; Kim et al., 2007; Hu et 

al., 2008) was primarily used for neuroinflammation studies. The mice from the MPTP 

treatment group received 4 intraperitoneal (i.p.) injections of MPTP-HCl (18 mg/kg free-

base) dissolved in saline at 2-h intervals. Mice were sacrificed 3 h after the last injection. The 

nigral neuroinflammatory response was also studied using the systemic LPS injection model 

(Qin et al., 2007), which induces chronic neuroinflammation and progressive dopaminergic 

degeneration in mice. A single injection of LPS (5 mg/kg, i.p.) was delivered to wild type, 

Fyn-/- and PKCδ-/- mice. Mice were sacrificed 24 to 48 h later. Control groups for both MPTP 

and LPS received equivolume injections of saline. We injected 2 µL of 6-OHDA, diluted at a 

concentration of 5 µg/µL in 0.02% ascorbic acid, into the left striatum (0.2 µL/min) using the 

Angle 2 stereotaxic apparatus (Leica Biosystems, St. Louis, MO). The coordinates, relative 

to bregma were: 0.7 mm anteroposterior, 2 mm lateral, and 2.4 mm ventral. The contralateral 

side was either not injected or injected with 2 µL of 0.02% ascorbic acid diluted in sterile 

PBS as a negative control. All animal procedures were approved by the Iowa State 

University Institutional Animal Care and Use Committee (IACUC).  

 

Primary microglial cultures and treatments 

Primary microglial cultures were prepared from wild type, Fyn-/- and PKCδ-/- postnatal 

day 1 (P1) mouse pups as described previously (Gordon et al., 2011). Briefly, mouse brains 

were harvested, meninges removed, and then placed in DMEM-F12 supplemented with 10% 
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heat-inactivated FBS, 50 U/mL penicillin, 50 μg/mL streptomycin, 2 mM L-glutamine, 100 

μM non-essential amino acids, and 2 mM sodium pyruvate. Brain tissues were then 

incubated in 0.25% Trypsin-EDTA for 30 min with gentle agitation. The trypsin reaction was 

stopped by adding double the volume of DMEM/F12 complete medium and then washing 

brain tissues three times. Tissues were then triturated gently to prepare a single cell 

suspension, which was then passed through a 70-μm nylon mesh cell strainer to remove 

tissue debris and aggregates. The cell suspension was then made up in DMEM/F12 complete 

medium and seeded into T-75 flasks, which were incubated in humidified 5% CO2 at 37°C. 

The medium was changed after five to six days and the mixed glial cells were grown to 

confluence. Microglial cells were separated from confluent mixed glial cultures by 

differential adherence and magnetic separation to >97% purity, and then were allowed to 

recover for 48 h after plating. Primary microglia were treated in DMEM/F12 complete 

medium containing 2% FBS. For signaling experiments, the protocol employed by Stuart 

(2007) was utilized with a small modification. For this, the primary microglial cells were 

kept in 2% DMEM/F12 complete medium for 5 h at 37ºC prior to treatment. The microglial 

cells were treated with 100-200 ng/mL LPS and 10-30 ng/mL TNFα for durations sampled at 

pre-specified time points. We selected the LPS doses used in this study based on previous 

studies in which stimulation of cultured primary mouse microglia with 100 and 200 ng/ml 

LPS resulted in significant microglial activation (Haynes et al., 2006; Crotti et al., 2014; Lee 

et al., 2014).  
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siRNAs and transfections of microglia 

Transient transfections of primary microglia with Fyn promoter reporter were 

performed using Lipofectamine LTX & Plus Reagent according to the manufacturer’s 

protocol. Primary microglia were plated at 0.75 x 106 cells/well in 12-well plates one day 

before transfection. We transiently transfected 3 µg of Fyn promoter construct. Cells were 

treated 24 h after transfection with or without 200 ng/mL of LPS for 12 h and then lysed. 

Luciferase activity was measured using a Dual-luciferase assay kit (Promega) on a Synergy 2 

multi-mode microplate reader (BioTek). Firefly luciferase luminescence values were used to 

normalize Renilla luciferase luminescence values. The pre-designed, on-target plus SMART 

pool Fyn siRNA (a combination of four siRNAs, Cat. No. LQ-040112-00-0002) and 

scrambled siRNA (Cat. No. D-001210-03-05) were purchased from Dharmacon (Lafayette, 

CO). We carried out siRNA transfections in primary mouse microglial cells with 

Lipofectamine 3000 reagent according to the manufacturer's protocol. Briefly, primary 

microglia were plated at 2 x 106 cells/well in 6-well plates one day before transfection. For 

each well, 300 pmol of Fyn siRNA pool (75 pmol each) or an equal amount of scrambled 

siRNA mixed with 5 μl of Lipofectamine 3000 were added to the cells. Seventy-two hours 

after the initial transfection, cells were analyzed by Western blotting to confirm the extent of 

Fyn knockdown or treated with LPS (200 ng/mL) for 24 further hours, after which cytokine 

content was analyzed by Luminex bioassay. 

Transfection of BV2 microglia with WT Fyn-FLAG, Y417A Fyn-FLAG and Empty 

Vector pcDNA3.1 constructs was performed by using the AMAXA Nucleofector Kit. 

Briefly, BV2 cells were resuspended in transfection buffer (Solution 1: 400 μM ATP-

disodium (Sigma A7699), 600 μM MgCl2-6H2O in water; Solution 2: 100 μM KH2PO4, 20 
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μM NaHCO3, 5 μM glucose in water) to a final concentration of 3 x 106 cells per 100 μL and 

mixed with the respective vector; 5 μg of vector DNA was used per transfection. 

 

Immunohistochemistry and immunofluorescence studies 

Immunohistochemistry was performed on sections from the substantia nigra and other 

brain regions of interest as described previously (Jin et al., 2011b; Ghosh et al., 2013). 

Briefly, mice were anesthetized with a mixture of 100 mg/kg ketamine and 10 mg/kg 

xylazine and then perfused transcardially with freshly prepared 4% paraformaldehyde (PFA). 

Extracted brains were post-fixed in 4% PFA for 48 h and 30-µm sections were cut using a 

freezing microtome (Leica Microsystems). Antigen retrieval was performed in citrate buffer 

(10 mM sodium citrate, pH 8.5) for 30 min at 90°C. Sections were then washed several times 

in PBS and blocked with PBS containing 2% BSA, 0.2% Triton X-100 and 0.05% Tween 20 

for 1 h at room temperature. Sections were then incubated with primary antibodies overnight 

at 4°C and washed 7 times in PBS on a Belly Dancer Shaker (SPI supplies). The sections 

were incubated with Alexa dye-conjugated secondary antibodies for 75 min at room 

temperature and their cell nuclei were stained with Hoechst dye. Sections were mounted on 

slides using Prolong antifade gold mounting medium (Invitrogen) according to the 

manufacturer’s instructions. Samples were visualized using an inverted fluorescence 

microscope (Nikon TE-2000U) and images were captured using a Spot digital camera 

(Diagnostic Instruments Inc). 

Immunofluorescence studies in primary microglia were performed according to 

previously published protocols with some modifications (Gordon et al., 2011). Briefly, 

microglial cells were grown on poly-D-lysine-coated coverslips and treated 48 h later. At the 
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end of treatments, cells were fixed with 4% PFA, washed in PBS and incubated in blocking 

buffer (PBS containing 2% BSA, 0.5% Triton X-100 and 0.05% Tween 20) for 1 h at room 

temperature. The coverslips were then incubated overnight at 4°C with respective primary 

antibodies diluted in PBS containing 2% BSA. Samples were then washed several times in 

PBS and incubated with Alexa 488 and 555 dye-conjugated secondary antibodies. The nuclei 

were labeled with Hoechst stain (10 μg/mL) and coverslips were mounted with Fluoromount 

medium (Sigma Aldrich) on glass slides for visualization. Quantification of the number of 

microglial/astroglial cells obtained post-separation was accomplished using JACoP, a 

downloadable ImageJ plugin from Fabrice P. Cordelières. Original Hoechst or antibody TIFF 

files were converted into 8-bit black-and-white images, and a colocalization image was 

generated. Counting of Hoechst-positive and Iba-1+Hoechst-positive cells was done using 

the Cell counter function of the default ‘Analyze’ plugin in ImageJ. 

 

Confocal imaging and Z stack image acquisition and analysis 

Confocal imaging was performed at the Iowa State University Microscopy Facility, 

using a Leica DMIRE2 confocal microscope with the 63X and 43X oil objectives and Leica 

Confocal Software. One optical series covered 11-13 optical slices of 0.5-µm thickness each. 

Microglial neuronal contact identification and quantification were performed by counting the 

number of colocalizations of the two markers, with TH marked red by anti 555 and Iba-1 

marked green by anti 488 using the methodology described by Barcia and colleagues (Barcia 

et al., 2012). The Imaris software was used to analyze the Z stack images for contact 

identification. The surface reconstruction wizard in the Imaris software was used to make 3-
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D reconstructions of stacks for easier viewing of microglial-dopaminergic contacts and 

surface topology. 

 

qRT-PCR 

RNA isolation from primary microglial cells and brain tissue samples was performed 

using the Absolutely RNA Miniprep Kit, and then 1 μg total of isolated RNA was used for 

reverse transcription with the AffinityScript qPCR cDNA synthesis system (Agilent 

Technologies) according to the manufacturer’s instructions. Quantitative SYBR Green PCR 

assays for gene expression were performed using the RT² SYBR Green Master Mix with pre-

validated primers (SABiosciences qPCR assay system). Catalog numbers of the primers were 

Fyn - PPM04015A, pro-IL1β - PPM03109E, TNFα-PPM03113G. The mouse 18S rRNA 

gene (catalog number - PPM57735E) was used as the housekeeping gene for normalization. 

For each primer, the amount of template providing maximum efficiency without inhibiting 

the PCR reaction was determined during initial optimization experiments. For all 

experiments, dissociation curves were generated to ensure a single peak was obtained at the 

right melting temperature without non-specific amplicons. The fold change in gene 

expression was determined by the ΔΔCt method using the threshold cycle (Ct) value for the 

housekeeping gene and the respective target gene of interest in each sample. 

 

Western blotting 

Brain tissue and microglial cell lysates were prepared using modified RIPA buffer 

and were normalized for equal amounts of protein using the Bradford protein assay kit. Equal 

amounts of protein (12 to 25 µg for cell lysates and 30-40 µg for tissue lysates) were loaded 
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for each sample and separated on either 12% or 15% SDS-PAGE gels depending on the 

molecular weight of the target protein. After separation, proteins were transferred to a 

nitrocellulose membrane and the nonspecific binding sites were blocked for 1 h using a 

blocking buffer specifically formulated for fluorescent Western blotting (Rockland 

Immunochemicals). Membranes were then probed with the respective primary antibodies for 

3 h at room temperature or overnight at 4°C. After incubation, the membranes were washed 7 

times with PBS containing 0.05% Tween 20, and then Secondary IR-680-conjugated anti-

mouse (1:10,000, goat anti-mouse, Molecular Probes) and IR-800 conjugated anti rabbit 

(1:10,000, goat anti-rabbit, Rockland) were used for antibody detection with the Odyssey IR 

imaging system (LiCor). Membranes were visualized on the Odyssey infrared imaging 

system. Antibodies for β-actin and Tubulin were used as loading controls. 

 

Co-immunoprecipitation studies 

We adopted an immunoprecipitation (IP) protocol with slight modifications from Gao 

and colleagues (Gao et al., 2011). Cell lysates were prepared in TNE buffer (10 mM Tris-

HCl at pH 7.5, 1% Nonidet P-40, 0.15 M NaCl, 1 mM EDTA, and 1:100 protease inhibitor 

cocktail) and centrifuged at 17,400g for 40 min at 4°C. The supernatant protein concentration 

was measured and normalized between samples. Approximately 50 μL of the sample 

containing 20 μg protein was used as input. For immunoprecipitation analysis, 1 mg of 

protein in 400 μL TNE buffer was used. Next, 10 μL (2 μg) of Fyn rabbit polyclonal 

antibody was added to the lysates, and the samples were set on an orbital shaker overnight at 

4°C. The next day, protein G Sepharose beads were spun down at 17,400g for 5 min and the 

ethanol supernatant was replaced with an equal volume of the lysis buffer. The Protein G 
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Sepharose slurry was washed once and 50 μL was added to each sample. The samples were 

set on an orbital shaker overnight at 4°C. Protein G beads were collected by centrifugation at 

2000g for 5 min and were washed four times with TNE buffer. The bound proteins were 

eluted by boiling in 2X protein-loading dye for 5 min. Immunoblots were performed on 12 % 

SDS-PAGE gels as described for Western blotting. 

 

Nuclear and cytoplasmic fractionation 

Nuclear and cytoplasmic fractions were performed using the NE-PER Kit (Thermo 

Scientific) as previously described (Jin et al., 2011a; Jin et al., 2014). Briefly, 5 X 106 cells 

were treated with LPS or TNFα for 15 min. CER1 reagent (200 μL) was used for each 

sample to extract the cytoplasmic fraction, and 50 μL of NER reagent was used to extract the 

nuclear fraction. Tubulin or β-actin was used as a cytosolic fraction marker. Lamin B was 

used as a nuclear fraction marker.  

 

Fyn kinase assays 

Cell pellets were washed with ice-cold PBS and resuspended in lysis buffer (25 mM 

HEPES at pH 7.5, 20 mM β-glycerophosphate, 0.1 mM sodium orthovanadate, 0.1% Triton 

X-100, 0.3 M NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 0.5 mM dithiothreitol, 10 mM NaF, and 

4 µg/mL each of aprotinin and leupeptin) (Kaul et al., 2005). Next, 50 µg of crude protein 

was incubated with 150 mM Fyn kinase substrate (Biomol), 100 mCi of [γ-32P] ATP, Src-

Mn-ATP cocktail and Src reaction buffer (Millipore) for 10 min at 30°C with agitation. To 

bring about precipitation the Fyn kinase substrate peptide, 20 mL of 40% trichloroacetic acid 

was added. 25 μL of the mixture was then spotted onto a P81 phosphocellulose square, and 5 
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min after spotting, the squares were washed five times in 0.75% phosphoric acid in PBS with 

a final wash step in acetone. The squares were transferred into a scintillation vial and the 

CPMA counts were read in a liquid scintillation system after adding 5 mL of scintillation 

cocktail to each vial. 

 

PKCδ  kinase assays 

PKCδ IP kinase activity assays were performed as described previously (Anantharam 

et al., 2002; Latchoumycandane et al., 2011; Harischandra et al., 2014) with some 

modifications for microglial cells. Briefly, primary microglial cells were collected after 

treatments, washed in ice-cold PBS and resuspended in a mild RIPA lysis buffer containing 

protease and phosphatase inhibitor cocktail (Pierce Biotechnology). The cells were placed on 

ice for 20 min to allow for complete lysis and then centrifuged at 16,200g for 45 min. The 

supernatant protein concentration was determined using the Bradford protein assay kit. 

Samples were normalized to a uniform total protein concentration of 2 µg/mL, and then 200 

µg of total protein in a 250 μL reaction volume was immunoprecipitated overnight at 4°C 

using 5 μg of PKCδ antibody. The next day, protein-A agarose beads (Sigma-Aldrich) were 

incubated for 1 h at room temperature. The protein A-bound antibody complexes were 

collected and washed 3 times in 2X kinase assay buffer (40 mM Tris, pH 7.4, 20 mM MgCl2, 

20 μM ATP, and 2.5 mM CaCl2), and then resuspended in the same buffer. The kinase 

reaction was started by adding 40 μL of the reaction buffer containing 0.4 mg of histone H1, 

50 μg/mL phosphatidylserine, 4 μM dioleoylglycerol, and 10 μCi of [γ-32P] ATP at 3000 

Ci/mM to the immunoprecipitated samples. The samples were then incubated for 10 min at 

30°C and the kinase reaction was stopped by adding 2X SDS loading buffer and boiling for 5 
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min. Proteins were separated on a 15% SDS-PAGE gel and the phosphorylated histone bands 

were imaged using a Fujifilm FLA 5000 imager. Image analysis and band quantification 

were performed using ImageJ.  

 

Nitric oxide detection 

Nitric oxide production by primary microglia was measured indirectly by 

quantification of nitrite in the supernatant using the Griess reagent (Sigma Aldrich). 

Microglia were plated in poly-D-lysine-coated 96-well plates at 1 x 105 cells/well. Cells were 

treated with 100 ng/mL of LPS for 24 h and after 100 μL of supernatant was collected from 

each well, an equal volume of the Griess reagent was added. The samples were incubated on 

a plate shaker at room temperature for 15 min until a stable color was obtained. The 

absorbance at 540 nm was measured using a Synergy 2 multi-mode microplate reader 

(BioTek Instruments) and the nitrite concentration was determined from a sodium nitrite 

standard curve. 

 

Multiplex cytokine Luminex immunoassays 

Primary microglia obtained from wild type, PKCδ-/- and Fyn-/- mice were seeded in 

poly-D-lysine-coated 96-well plates at 1 x 105 cells/well. The cells were treated for 24 h with 

100-200 ng/mL LPS or 10 ng/mL TNFα. After treatment, 50 µL of supernatant from each 

well was collected and frozen at -80°C. The levels of cytokines and chemokines in the 

supernatants were determined using the Luminex bead-based immunoassay platform (Vignali 

2000) and pre-validated multiplex kits (Milliplex mouse cytokine panel – Millipore) 

according to the manufacturer’s instructions. 
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DAB immunostaining and grading of microglial morphology 

Iba-1 diaminobenzidine (DAB) immunostaining was performed on striatal and 

substantia nigral sections as described previously (Ghosh et al., 2010). Briefly, mice were 

perfused with 4% PFA and brains were post-fixed with PFA for 48 h before storage in 30% 

sucrose. Fixed brains were embedded in O.C.T compound (Tissue-Tek) and stored frozen 

at -80°C until the frozen blocks were sliced into 30-µm coronal sections using a cryostat. 

Sections were probed with the primary antibodies overnight at 4°C and then incubated with 

biotinylated anti-rabbit secondary antibody. The sections were then treated with Avidin 

peroxidase (Vectastain ABC Elite kit). The DAB reagent was used for producing the brown 

colored stain. Grading of microglial morphology was performed as described elsewhere 

(Lastres-Becker et al., 2012). For microglial grading, images were sharpened in ImageJ so 

the morphology could be more clearly visualized. The cell counter function in the ‘Analyze’ 

plugin was used to count the number of Type A, B, C and D microglia in the ventral 

midbrain sections. 

 

Data analysis 

Data analysis was performed using Prism 4.0 (GraphPad Software, San Diego, CA). 

The data was initially analyzed using one-way ANOVA and Bonferroni's post-test to 

compare the means of treatment groups. Differences of p<0.05 were considered statistically 

significant. Student's t-test was used when comparing two groups. 
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Results 

Fyn and PKCδ  are differentially expressed in primary astrocytes and microglia 

Primary mouse microglia were prepared as described in our recent publication using a 

magnetic separation method, which enables us to obtain a high-yield pure fraction of 

microglia from mixed glial cultures (Gordon et al., 2011). Iba-1 and GFAP 

immunocytochemistry confirmed that the microglial fraction obtained after magnetic 

separation was devoid of astrocytes (Fig. 1A). Quantification of Hoechst co-localized Iba-1-

positive microglia and GFAP-positive astrocytes using the ImageJ plugin JACoP revealed a 

microglial population that was ~97% pure post-separation (Figs. 1B-C). Immunoblotting 

analysis revealed that microglia-enriched fractions expressed significantly more Fyn (60 

kDa) and PKCδ (76 kDa) than did astrocyte-enriched (microglia-depleted) fractions (Figs. 

1D-E). The differential expression of both Fyn and PKCδ in microglia compared to 

astrocytes prompted us to study the roles these proteins may play in microglial pro-

inflammatory signaling. 

 

Fyn kinase is rapidly activated in microglial cells and in the ventral midbrain following 

inflammogen stimulation 

Our initial experiment to determine whether the non-receptor tyrosine kinase Fyn 

plays a role in regulating neuroinflammatory responses in PD was carried out in BV2 

microglial cells, which are widely used in-vitro models of neuroinflammation (Henn et al., 

2009; Gao et al., 2011; Kim et al., 2013b). We treated BV2 cells with 1 μg/mL LPS for 10-

60 min and measured Fyn activity using an in-vitro kinase assay (Saminathan et al., 2011). A 

kinase reaction mixture containing 32P-ATP and a Fyn-specific peptide substrate were added 
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to whole cell lysates. LPS stimulation of BV2 microglia rapidly induced Fyn activity as early 

as 10 min post-LPS stimulation (Fig. 2A), and maximal activity was attained 30 min post-

LPS stimulation.  In addition to the Fyn kinase activity assay, we also determined the 

phosphorylation status of the Y416 residue in its activation loop domain, by utilizing the 

phospho Y416 Src family kinase (p-Y416 SFK) antibody, which recognizes activated Src 

family kinases. This antibody has been used extensively to demonstrate Fyn kinase activation 

(Larson et al.; Um et al.; Wake et al., 2011; Kouadir et al., 2012). Our immunoblotting 

analysis of LPS-treated BV2 lysates using the p-Y416 SFK antibody revealed LPS-induced 

SFK activation (Fig. 2B). To further confirm inflammogen-induced Fyn activation in BV2 

microglia, we transiently transfected BV2 cells with FLAG-tagged WT-Fyn and Y417A-Fyn 

(activation loop mutant) constructs. We then performed immunoprecipitation studies in LPS-

treated transfected BV2 cells. We pulled down Fyn from FLAG-tagged WT-Fyn and Y417A-

Fyn transfected, LPS-treated BV2 cells and immunoblotted for p-Y416 SFK levels. A strong 

p-Y416 SFK signal was detected in the LPS-treated WT-Fyn-FLAG-transfected cells, but not 

in the LPS-treated Y417A-Fyn-transfected cells (Figs. 2C-D).  

Next, we extended our studies to primary microglia derived from both wild-type and 

Fyn-deficient (Fyn-/-) mice. These were treated with 200 ng/mL LPS for 0-30 min. In line 

with the analyses of BV2 cells, stimulation of the primary microglia from Fyn+/+ mice rapidly 

increased the levels of p-Y416 SFK (Fig. 2E). Interestingly, p-Y416 SFK was not detected in 

LPS-treated Fyn-/- microglia, suggesting that LPS preferentially induces Fyn phosphorylation 

in microglia over other Src family kinases. Treatment of wild-type and Fyn-deficient 

microglia with TNFα also yielded similar results. Both 10 ng/mL and 30 ng/mL TNFα 

treatments induced similar levels of p-Y416 SFK in wild-type, but not in Fyn-deficient 
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microglia (Fig. 2F). Pretreatment of wild-type microglia with either the TLR (Toll-like 

Receptor) antagonist IAXO-101 or the TNFα signaling antagonist Etanercept significantly 

attenuated both LPS- and TNFα-mediated Fyn activation, respectively (Fig. 2G). We also 

examined subcellular localization of activated Fyn following LPS stimulation. The Iba-1/p-

Y416 SFK double-immunocytochemical analysis showed that LPS treatment dramatically 

increased p-Y416 Fyn levels in WT primary microglia (Fig. 2H). Active Fyn seems to be 

preferentially expressed at the periphery of the microglia, possibly allowing it to become 

activated quickly in response to a pro-inflammatory stimulus. Additionally, activated Fyn 

was also found in the nucleus of LPS-treated primary microglia. Next, we wanted to confirm 

that LPS-treatment would activate Fyn in the substantia nigra of mice. Knowing that a single 

intraperitoneal LPS injection elicits microglial cell activation in the substantia nigra (Qin et 

al., 2007), we challenged Fyn+/+ and Fyn-/- mice with 5 mg/kg LPS or sterile PBS vehicle 

intraperitoneally for 3 h. Immunoblot analysis of ventral midbrain lysates revealed that LPS 

significantly increased p-Y416 SFK levels in wild-type compared to saline control, whereas 

LPS failed to increase p-Y416 SFK levels in the Fyn-/- ventral midbrain lysates.(Fig. 2I). 

These studies indicate that stimulating microglia with inflammatory stimuli rapidly activates 

Fyn kinase in both cell culture and animal models of neuroinflammation. 

 

Fyn contributes to LPS- and TNFα-induced tyrosine phosphorylation and activation of 

PKCδ in primary microglia 

It has been shown that Src family kinases, including Fyn, phosphorylate PKCδ at 

residue Y311 in platelets and in immortalized dopaminergic neuronal cells (Steinberg, 2004; 

Saminathan et al., 2011). Therefore, we investigated if Fyn-PKCd signaling regulates 
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microglial pro-inflammatory responses using primary microglia cultures from wild-type, Fyn-

/- and PKCδ-/- mice. Stimulation with LPS induced a rapid and time-dependent increase in p-

Y311 PKCδ in wild-type microglia. In contrast, LPS failed to increase Y311 phosphorylation 

of PKCδ in the Fyn-/- microglia (Figs. 3A-B). Similarly, TNFα stimulation of microglia also 

increased PKCδ Y311 phosphorylation in wild-type, but not in Fyn-deficient primary 

microglia (Figs. 3C-D). As expected, immunoblot analysis did not detect any LPS-induced 

phosphorylation of Y311 PKCδ in PKCδ-/- microglia. To confirm further that Fyn mediates 

the activation of PKCδ in activated microglia, we measured PKCδ kinase activity in wild-

type and Fyn-/- microglia. An in-vitro PKCδ kinase assay showed that LPS rapidly increased 

PKCδ kinase activity in wild-type microglia; however, LPS-induced PKCδ kinase activity 

was significantly less in Fyn-/- microglia (Fig. 3E). To further confirm the Fyn-PKCδ 

interaction, we performed co-immunoprecipitation studies in BV2 cells transfected with the 

WT-Fyn-FLAG construct. As shown in Figs. 3F-G from the co-immunoprecipitation results, 

co-IP analysis of WT-Fyn-FLAG transfected lysates revealed that Fyn and PKCδ interact 

during LPS stimulation.  Taken together with the PKCδ kinase activity results, these data 

reveal that Fyn kinase mediates LPS- and TNFα-induced activation of PKCδ in primary 

microglia.  

 

The Fyn-PKCδ signaling axis mediates MAP kinase activation in microglial cells 

We next examined whether the Fyn-PKCδ signaling axis plays a role in mediating 

activation of the MAP kinase pathway, a key hallmark of neuroinflammatory signaling in 

microglia. MAP kinases are important regulators of pro-inflammatory cytokine synthesis in 

microglial cells (Koistinaho and Koistinaho, 2002; Tansey and Goldberg, 2010). For this 
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purpose, we treated wild-type, Fyn-/-, and PKCδ-/- microglia with LPS for 15, 30 and 45 min 

each and determined MAPK activation. The LPS treatment significantly increased the 

phosphorylation of p38 and p44/42 (p-ERK) kinases in wild-type microglia (Figs. 4A-B), 

with LPS-induced phosphorylation peaking at 15 min and decreasing thereafter. In contrast, 

LPS-induced phosphorylation of p38 and p44/42 (p-ERK) was significantly reduced in Fyn-/- 

and PKCd-/- primary microglia. Similar results were obtained with TNFα treatment of wild-

type, Fyn-/- and PKCδ-/- microglia (Figs. 4C-D).  These results suggest that Fyn-PKCδ 

signaling is an important upstream regulator of MAP kinases in microglia during both LPS 

and TNFα stimulation.  

 

Fyn contributes to inflammogen-mediated NFκB pathway activation in microglial cells  

Pro-inflammatory signaling mediated by both LPS and TNFα converges at the NFκB 

pathway. Activation of NFκB signaling during the pro-inflammatory process is characterized 

by the phosphorylation and subsequent degradation of the inhibitory protein IκBα, after 

which the NFκB p65-p50 heterodimer enters the nucleus, leading to the transcription of 

various pro-inflammatory genes (Hayden and Ghosh, 2004). To elucidate whether the Fyn 

mediates the nuclear translocation and activation of NFκB signaling in activated microglia, 

primary microglia obtained from wild-type and Fyn-/- microglia were treated with LPS for 

15-45 min. Whole cell lysates were prepared and probed for IκBα. LPS treatment induced a 

greater degradation of IκBα in wild-type microglia than in Fyn-/- microglia at the 15 minute 

time point, followed by the resynthesis of IκBα 30 and 45 minutes post stimulation in the 

WT cells. Resynthesis of IκBα in Fyn-/- microglia was almost completely abrogated, 

indicating diminished NFκB activation (Figs. 5A-B). Next, we investigated the role of Fyn in 



www.manaraa.com

61 

 

the nuclear translocation of the p65 component of the NFκB complex in response to LPS and 

TNFα treatments. Nuclear and cytoplasmic fractions were prepared from WT and Fyn-/- 

microglia treated with LPS or TNFα for 15 min before being assessed for p65 content. 

Immunoblotting revealed lesser nuclear translocation of p65 in LPS- and TNFα-treated Fyn-/- 

microglia than in wild-type microglia (Figs. 5C-D). These results were further supported by 

Iba-1/p65 double-immunocytochemistry showing strong LPS-induced nuclear translocation 

of p65 in wild-type, but not in the Fyn-/- microglia (Fig. 5E). Together, these results clearly 

suggest that Fyn kinase regulates NFκB activation in microglial cells.  

 

LPS- or TNFα-induced pro-inflammatory cytokine production is suppressed in Fyn/ 

PKCδ deficient microglia 

Next, we determined whether Fyn-PKCδ signaling axis regulates microglia-mediated 

pro-inflammatory mediator production. After treating wild-type, PKCδ-/- and Fyn-/- microglial 

cultures with LPS or TNFα, we utilized multiplexed immunoassays to quantify 

inflammogen-induced cytokine secretion. We observed significant production of the 

cytokines IL-6, IL-12p70, and TNFα from wild-type microglia treated with LPS (Fig. 6A). 

However, the production of these cytokines was significantly dampened in Fyn- and PKCδ-

deficient microglia, providing evidence for the hypothesis that attenuated pro-inflammatory 

signaling in Fyn-/- and PKCδ-/- microglia suppresses pro-inflammatory mediator production. 

When we knocked down Fyn expression in wild-type primary microglia by Fyn-specific 

siRNA (Fig. 6B), diminished amounts of the pro-inflammatory cytokines IL-6 and TNFα 

were produced in response to LPS treatment (Fig. 6C). Next, treatment of wild-type and Fyn-

/- microglia with TNFα yielded similar results, with the Fyn-/- microglia showing reduced IL-
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6 and TNFα production (Fig. 6D). Western blot analysis also demonstrated that Fyn-deficient 

microglia produced less TNFα relative to wild-type microglia (Fig. 6E). To further confirm 

the role of Fyn in pro-inflammatory cytokine production, we expressed Fyn wild-type (WT-

Fyn-FLAG) or activation loop mutant (kinase deficient Fyn kinase, Y417A Fyn-FLAG) in 

BV2 microglial cells (Fig. 6F). Following the transfection, BV2 cells transfected WT-Fyn-

FLAG, Y417A Fyn-FLAG or empty vector constructs were treated with 1 µg/mL LPS for 24 

h. Luminex immunoassay of cell supernatants revealed that overexpressing wild-type Fyn 

augmented pro-inflammatory cytokine release, whereas overexpressing the inactive Y417A 

Fyn mutant suppressed the production of IL-6 and IL-12 (Figs. 6F-G).  

 

Fyn/PKCδ regulates the induction of neuroinflammatory markers iNOS and gp91phox in 

microglia during LPS stimulation 

We further assessed whether Fyn alters the induction of iNOS and gp91phox, which are 

key pro-inflammatory responses of microglial activation following LPS treatment. Treatment 

with LPS induced a stronger nitrite response from wild-type microglia than from Fyn-/- 

microglia (Fig. 7A). This was further confirmed by immunostaining and immunoblotting for 

iNOS, the enzyme that mediates nitrite production. There was a greater induction of iNOS in 

Fyn wild-type microglia relative to Fyn-/- microglia (Figs. 7B-D). We also determined the 

expression of other key neuroinflammatory markers, including gp91phox and Iba-1, in 

response to LPS stimulation. We, as well as other groups, have previously shown increased 

expression of the NADPH oxidase component gp91phox and Iba-1 following LPS stimulation 

of primary microglia (Gao et al., 2011; Gordon et al., 2011). Western blot analysis revealed 

that LPS increased expression of both gp91phox and Iba-1 in wild-type, but not in Fyn-/- or 
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PKCδ-/- microglia (Figs. 7E-F). Collectively, these data indicate that Fyn-PKCδ signaling 

plays a major pro-inflammatory role in microglial cells.   

 

Fyn-/- and PKCδ-/- mice are resistant to LPS- and MPTP-induced neuroinflammatory 

responses 

To extend our findings from isolated primary microglia to in vivo animal models of 

neuroinflammation, we first used the LPS model, which has previously been used to evoke 

neuroinflammatory responses in vivo (Choi et al., 2007; Qin et al., 2007). Wild-type 

(PKCδ+/+ and Fyn+/+), PKCδ-/- and Fyn-/- mice were injected with 5 mg/kg LPS or PBS and 

were sacrificed 3 h later. Striatal mRNA contents of the pro-inflammatory cytokines pro-IL-

1β and TNFα were determined by qRT-PCR.  The levels of cytokine induction were almost 

identical in both wild-type groups, and we thus pooled the results. Systemic LPS 

administration strongly increased the levels of pro-IL-1β and TNFα transcripts in wild-type 

striata, but not in Fyn-/- and PKCδ-/- striata (Fig. 8A). To further establish the role of Fyn 

relevant to PD-associated neuroinflammation, we used the well-known Parkinsonian toxicant 

MPTP. We subjected wild-type and Fyn-/- mice to an acute MPTP regimen (4 × 18 mg/kg, 2 

h apart) and collected their brains for immunohistochemical analysis 24 h after the final 

MPTP injection. This acute MPTP model has been widely adopted for studying the 

neuroinflammatory response in the nigrostriatal pathway because maximal microglial 

activation occurs 24-48 h after the MPTP challenge (Wu et al., 2002; Wu et al., 2003; Sriram 

et al., 2006; Hirsch and Hunot, 2009).  Following the MPTP challenge, successive 30-µm 

ventral midbrain sections from Fyn+/+ and Fyn-/- mice were stained for the microglial marker 

Iba-1, and then microglial morphology was quantified using a recently well-established 
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morphometric rating scale as discussed by others (Lastres-Becker et al., 2012). 

Representations of Type A-D microglial phenotype are provided in Fig. 8B. Treating Fyn+/+ 

mice with the acute MPTP regimen increased Iba-1 expression and discernibly shifted 

microglial morphology from its typical ramified state to its more amoeboid, activated 

morphology. After MPTP administration, significantly fewer Type A and more Type B and 

C microglia were observed in the Fyn+/+ SN, but this shift in microglial morphology was not 

apparent in the Fyn-/- mice (Figs. 8C-D). We also determined the induction of the NADPH 

oxidase component gp91phox in MPTP animal model of neuroinflammation. Immunoblotting 

analysis revealed that MPTP increased expression of gp91phox in WT but not in Fyn-/- ventral 

midbrain tissues (Figs. 8E-F). Overall, these results confirm that our in-vitro data translate 

well to animal models of neuroinflammation.  

 

Fyn-/- and PKCδ-/- mice are protected against 6-OHDA-induced nigrostriatal 

dopaminergic neuronal deficits and microgliosis 

The 6-OHDA mouse model has recently been shown to elicit a neuroinflammatory 

response and neurodegeneration in the nigrostriatal dopaminergic system (Stott and Barker, 

2014). While studying the role of Fyn in dopamine D1 receptor agonist-induced 

redistribution of NMDA receptor subunits, it was serendipitously discovered that Fyn-/- mice 

were remarkably intransigent to 6-OHDA-induced behavioral deficits and striatal TH loss 

(Dunah et al., 2004). Fyn+/+ and Fyn-/- mice, injected unilaterally with 6-OHDA (Fig. 9B) 

were sacrificed 9 days post-treatment, since mice at this treatment stage concurrently exhibit 

fewer striatal dopaminergic terminals, significantly fewer TH-positive cells in the SN, and 

microgliosis within the SN (Stott and Barker, 2014). Fyn-/- mice were more resistant to 6-
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OHDA-induced striatal nerve terminal degeneration relative to Fyn+/+ mice (Figs. 9A and C). 

We also show in our studies that 6-OHDA induced massive gliosis coupled with 

dopaminergic neuronal loss (Fig. 9D). However, Fyn-/- mice show both greater survival of 

nigral dopaminergic neurons and a diminished neuroinflammatory microglial response.  

In the next set of in vivo experiments, we checked whether PKCδ-/- mice were also 

resistant to 6-OHDA-induced nigral microgliosis and dopaminergic neuronal loss. PKCδ+/+ 

and PKCδ-/- mice were injected unilaterally with 6-OHDA for 9 days, and DAB-TH 

immunostaining was performed on striatal sections as described above (Fig. 10B). Similar to 

Fyn-/- mice, PKCδ-/- mice showed reduced striatal TH loss following 6-OHDA treatment 

(Figs. 10A and C). We also assessed nigral microgliosis by double-staining ventral midbrain 

sections for TH and Iba-1. As shown in Fig. 10D-E, PKCδ+/+ mice showed less TH-positive 

neuronal staining in the SN along with significantly more microgliosis on the ipsilateral side 

than on the contralateral side; however, the PKCδ-/- mice showed a marked resistance to 6-

OHDA-induced nigral TH loss as well as microgliosis. Thus, results from both Fyn and 

PKCδ knockout models of 6-OHDA neurotoxicity confirm the role of the Fyn-PKCδ 

signaling axis in a neuroinflammatory response in the nigrostriatal dopaminergic system.  

 

Diminished 6-OHDA-induced glial neuronal contact formation in the Fyn-/- substantia 

nigra 

Recently, it was demonstrated that treating mice with MPTP rapidly increased the 

number of microglial-neuronal appositions, termed gliapses (Barcia et al., 2012). These 

contacts preceded neuronal phagocytosis by the microglia. Similar appositions between 

microglia and dopaminergic neurons were demonstrated in the 6-OHDA model, with 
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evidence suggesting that microglial cells actually phagocytized neurons (Virgone-Carlotta et 

al., 2013), which has been postulated to occur if the neurons are dysfunctional. Our confocal 

high magnification Z stack image analysis (Imaris software) revealed a sharply increased 

number of microglial-neuronal contacts formed in the Fyn+/+ SN post-6-OHDA treatment as 

indicated by arrowheads (Figs. 11A, B and F). The 3-D reconstructions of the respective 

stacks demonstrating contacts between dopaminergic neurons and microglia are shown 

adjacent to the original images (Fig. 11B). The number of gliapses per SN dopaminergic 

neuron was dramatically reduced in the 6-OHDA-injected Fyn-/- mice (Figs. 11C, D, and F). 

Typical contacts formed between microglial processes and dopaminergic neuronal cell bodies 

(termed Process-Body, or Pr-B contacts), and those formed between the microglial cell body 

and the dopaminergic neuronal cell body (Body-Body, or B-B contacts), are shown in Fig. 

11E. Image analysis involving optical slices through the Z plane allowed us to both easily 

count gliapses and visualize actual engulfment events. Representative (Figs. 11B and D) 

gliapses between a dopaminergic neuron and a microglial cell in the SN of 6-OHDA-injected 

Fyn+/+ and Fyn-/- mice reveal a conspicuous reduction in the number of gliapses per neuron. 

Collectively, our confocal imaging results demonstrate Fyn plays a key role in activation of 

microglial morphological changes in vivo during inflammatory insults in nigrostriatal system.    

 

Prolonged inflammogen stimulation effects Fyn induction upon microglial activation  

Thus far, our results demonstrated that short-term treatment of microglial cells with 

LPS and TNFα brings about an increase in Fyn activity, but not its expression. Strikingly, we 

discovered that prolonged treatment (12-24 h) of microglia with LPS or TNFα actually 

resulted in increased Fyn expression, evidenced by Western blot and immunocytochemistry 
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(Fig. 12A-C). To confirm whether this is really due to induction of Fyn protein or increased 

protein stability, we performed qRT-PCR for Fyn mRNA expression in control and LPS-

treated microglial cells. The result showed that treatment of microglia with LPS for 12 h 

brought about an increase in Fyn transcript levels (Fig. 12D). We also evaluated the effects 

of prolonged LPS treatment on Fyn promoter activity. For this, we transiently transfected 

primary microglia with a dual-luciferase Fyn reporter construct containing the 3.1 kb Fyn 

promoter fragment. LPS treatment significantly increased Fyn promoter activity (Fig. 12E), 

indicating strongly that Fyn is transcriptionally induced in microglial cells post-prolonged 

inflammogen administration. To further examine whether LPS upregulates Fyn mRNA 

expression, we injected wild-type mice with a single dose of LPS (5 mg/kg, i.p.) and 

evaluated the Fyn mRNA expression by qRT-PCR analysis. As shown in Fig. 12F, 

administration of LPS also induced Fyn transcript levels in the striatum. Together, these data 

suggest that prolonged LPS exposure induces Fyn gene upregulation in microglia, indicating 

that Fyn may have a sustained role in chronic neuroinflammatory processes.  

 

Discussion 

Evidence from experimental models and human PD post-mortem studies strongly 

implicates the microglial-mediated inflammatory response as a major driver in the 

progression of PD; however, the key upstream cell signaling mechanisms that govern the 

neuroinflammatory processes have yet to be elucidated. Our results obtained from both cell 

culture and animal models provide novel insight into the role of the Fyn-PKCδ signaling 

cascade in regulating microglia-mediated neuroinflammation as related to PD pathogenesis. 

We have demonstrated dual regulation of pro-neuroinflammatory responses in microglia 
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involving post-translational tyrosine phosphorylation of Fyn at its activation loop during the 

early stages of an inflammatory insult as well as transcriptional upregulation of Fyn upon 

prolonged exposure to pro-inflammatory stimuli. We have also showed that Fyn serves as a 

major upstream signaling molecule that works in concert with PKCδ to influence MAP 

kinase downstream and the NFκB pro-inflammatory cascade. Collectively, our study 

provides novel and significant insight into the pro-inflammatory function of Fyn-PKCδ 

signaling in PD models, and to the best of our knowledge, we are the first to discern this key 

signaling cascade that is relevant to microglia-mediated neuroinflammation in the 

nigrostriatal dopaminergic system. 

We demonstrate that both the tyrosine kinase Fyn and the serine/threonine kinase 

PKCδ are differentially expressed in microglia and astrocytes (Fig. 1). No prior comparative 

data are available on Fyn and PKCδ expression in primary microglia. Although the roles of 

Src family kinases in TLR signaling are being identified, most studies have used peripheral 

immune and non-immune cells to determine Src kinase signaling. For example, multiple Src 

family kinases were activated by LPS in human lung microvascular endothelial cells (Gong 

et al., 2008). The activation of Src kinases mediated by TLR agonists depends on CD14, 

TLR2 and TLR4 (Reed-Geaghan et al., 2009), and Fyn has been shown to be associated with 

TLR2 in TLR2-overexpressing HEK293 cells (Finberg et al., 2012). Peritoneal macrophages 

have often been used as putative substitutes for brain microglia; Fyn contributes to CD36-

mediated signaling responses upon Aβ1-42 stimulation of macrophages (Moore et al., 2002). 

Of note, the authors reported unaltered LPS-induced MAP kinase activation in Fyn-/- 

peritoneal macrophages when compared to WT macrophages. These apparent discrepancies 

may be attributed to the inherent differences between the microglial and macrophage gene 
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expression profiles (Hickman et al., 2013). Many studies have used the p-Y416 src family 

kinase antibody as a direct indicator of Fyn activation, without using immunoprecipitation or 

Fyn-/- primary microglia as confirmatory tools to establish Fyn activation. In the present 

study, we demonstrate that Fyn is rapidly activated in primary microglia within 15-30 min of 

exposure to inflammogens (Figs. 2A-F). Immunoprecipitation studies and experiments with 

Fyn-/- microglia clearly confirmed that Fyn kinase is specifically activated during LPS and 

TNFα stimulation.  LPS and TNFα activate microglia/macrophages via TLR4 and TNFα 

Receptor 1 (TNFR1) signaling, respectively (Olson and Miller, 2004; Parameswaran and 

Patial, 2010). Importantly, our study reveals that Fyn is a common signaling conduit in both 

TLR- and TNFR1-mediated signaling, since the TLR antagonist IAXO-101 and the TNFα 

signaling antagonist Etanercept attenuated Fyn activation (Fig. 2G). Immunocytochemistry 

analysis revealed that activated Fyn primarily localized to the microglial cell membrane. 

Although the functional relevance of this localization is not presently known, it is possible 

that movement of activated Fyn to the microglial membrane may regulate cell migration and 

cytokine release. Our results with the LPS mouse model provide in vivo evidence for rapid 

Fyn activation in the ventral midbrain region during inflammatory insults (Fig. 2I).    

Our group has previously shown that PKCδ kinase proteolytic activation promotes 

oxidative stress-induced pro-apoptotic signaling pathways in dopaminergic neuronal cells 

(Kaul et al., 2003; Zhang et al., 2007; Jin et al., 2011a; Jin et al., 2011b). Recently, it was 

demonstrated that PKCδ is proteolytically cleaved by caspase-3 in LPS-treated BV2 cells 

(Burguillos et al., 2011).   In the present study, we demonstrate that activated Fyn associates 

with PKCδ to phosphorylate the Y311 site, resulting in increased PKCδ kinase activity (Fig. 
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3). To the best of our knowledge, we are the first group to show the assembly of the Fyn-

PKCδ signaling complex in microglial cells during pro-inflammatory conditions.   

MAP kinase activation is necessary for cytokine production in various immune cell 

types, including microglia (El Benna et al., 1996; Koistinaho and Koistinaho, 2002). We 

demonstrate that Fyn-PKCδ signaling contributes to MAP kinase phosphorylation during 

microglial activation. Both LPS and TNFα stimulations rapidly activated the p38 and p-ERK 

MAP kinases in WT, but to a significantly lesser extent in the Fyn-/- and PKCδ-/- microglia 

(Fig. 4), indicating that Fyn-PKCδ signaling lies upstream of MAP kinase in microglia. 

Given that p38 is a prominent MAP kinase associated with the inflammatory cascade, our 

results suggest that Fyn and PKCδ are key upstream regulators of the pro-inflammatory 

function of this kinase. The downstream events of MAP kinase activation include NFκB 

signaling, which plays a cardinal role in eliciting pro-inflammatory responses in microglia. 

Selective inhibition of NFκB signaling has also proved beneficial in-vitro as well as in an 

experimental mouse model of PD (Ghosh et al., 2007). We show here that IκBα degradation 

and p65-NFκB nuclear translocation were diminished in Fyn-/- microglia stimulated with LPS 

or TNFα (Fig. 5), lending credence to the hypothesis that upstream Fyn signaling contributes 

to NFκB pathway activation in microglia. To our knowledge, the role of Fyn signaling in 

NFκB-mediated pro-inflammatory signaling in microglia has never been explored. Fyn has 

been shown to contribute to anaphylaxis inducer DNP36-HSA mediated NFκB activation in 

Mast cells (Gomez et al., 2005b). More recently, Fyn was shown to mediate the nuclear 

translocation of p65-NFκB downstream of NKG2D and CD137 activation in natural killer 

cells, utilizing a signaling mechanism dependent on ADAP (Rajasekaran et al., 2013). This 
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signaling pathway is almost certainly distinct from the Fyn-dependent microglial activation 

pathway, evidenced by the fact that ADAP-/- microglia display unaltered pro-inflammatory 

responses (Engelmann et al., 2013).  

Classical activation of microglia by TLR and TNFR1 agonists produces pro-

inflammatory cytokines and chemokines, which mediate the downstream effects of 

microglial activation. Recently, we showed that TNFα directly induces dopaminergic 

neuronal apoptosis (Gordon et al., 2012). In our present study, the induction of the cytokines 

IL-6, IL-12 and TNFα was all diminished in Fyn-/- and PKCδ-/- microglia in comparison to 

wild-type microglia (Fig. 6A). Consistently, genetic knockdown of Fyn via siRNA also 

resulted in diminished LPS-induced pro-inflammatory cytokine secretion (Figs. 6B-C). 

TNFα-mediated production of IL-6 and TNFα was also diminished in Fyn deficient 

microglia (Figs. 6D-E). Overexpressing the Fyn Y417A activation loop kinase deficient 

mutant construct in BV2 microglial cells also diminished LPS-stimulated cytokine 

production, implicating that the phosphorylation of tyrosine 417 is critical to pro-

inflammatory function of Fyn (Figs. 6F-G). Furthermore, we showed that the LPS-induced 

expression of iNOS and secretion of nitrite were significantly attenuated in the Fyn-/- 

microglia (Figs. 7A-D). We and several other groups have reported increased expression of 

the NADPH oxidase component gp91phox, as well as the microglial marker Iba-1 following 

pro-inflammatory stimulation of microglia (Gao et al., 2011; Gordon et al., 2011). We 

demonstrate herein that prolonged LPS stimulation brought about the induction of these 

neuroinflammatory markers in wild-type, but not in Fyn-/- and PKCδ-/- microglia (Figs. 7E-F).  

We extended our in-vitro studies to well-characterized animal models of 

neuroinflammation, wherein a single intraperitoneal injection of LPS in mice increases 
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TNFα in the brain to levels that remain elevated long after serum TNFα levels have returned 

to normal (Qin et al., 2007). We utilized this model system to check for LPS-induced striatal 

pro-inflammatory cytokine induction in wild type, Fyn-/- and PKCδ-/- mice. Strikingly, a 

single injection of LPS strongly increased WT striatal TNFα and pro-IL-1β mRNA levels; 

however, the induction of these cytokines was greatly diminished in Fyn-/- and PKCδ-/- striata 

(Fig. 8A). In addition to the LPS model, we also determined the pro-inflammatory role of 

Fyn in the well-studied acute MPTP model of neuroinflammation. MPTP induced reactive 

microgliosis and increased gp91phox expression in the nigra of WT mice, but not in Fyn-/- mice 

(Figs. 8E-F). Interestingly, a quiescent ramified state of microglial morphology was observed 

in MPTP treated Fyn-/- mice, while more amoeboid activated microglia were noted in Fyn 

wild-type mice (Figs. 8C-D). In addition to the MPTP model, we further utilized the 6-

OHDA-induced selective dopaminergic lesion model to validate that ablating Fyn or PKCδ 

confers resistance to nigrostriatal dopaminergic degeneration and microgliosis (Figs. 9-10).  

Taken together, our results indicate that the Fyn-PKCδ signaling axis plays an important role 

in mediating pro-inflammatory response in both cell culture and animal models of 

neuroinflammation.  

Recent imaging studies have demonstrated the formation of glial-neuronal contacts, 

called gliapses, formed between dopaminergic neurons and microglia that precede neuron 

loss in the MPTP model (Barcia et al., 2012; Barcia et al., 2013). To determine whether Fyn 

plays a role in microglial-dopaminergic neuron contact formation, we adopted the 6-OHDA 

mouse model. The formation of gliapses was described recently in the 6-OHDA model 

(Virgone-Carlotta et al., 2013). Our results from high magnification confocal analysis 

revealed the formation of gliapses was almost completely blocked in 6-OHDA injected Fyn-/- 
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mice (Fig. 11). The reduced number of gliapses correlated well with reduced dopaminergic 

neuronal loss following 6-OHDA administration to the Fyn-/- mice. Lastly, prolonged 

stimulation of microglial cells with inflammogens strongly elicited an induction in Fyn 

kinase expression levels (Fig. 12). The aggregated form of α-synuclein, the primary 

component of PD-associated Lewy bodies, can activate microglia by utilizing CD36- and 

TLR2-dependent pathways (Su et al., 2008; Kim et al., 2013a). Studies are underway in our 

lab to demonstrate the role that Fyn plays in aggregated α-synuclein-induced 

neuroinflammatory events. 

            We demonstrate that Fyn activation plays an upstream regulatory role in eliciting pro-

inflammatory signaling following both acute and chronic states of microglia stimulation. We 

arrived at this conclusion based on various lines of experimental evidence from cell culture, 

primary culture and in vivo models utilizing both Fyn and PKCδ knockout mice. Our 

mechanistic studies revealed that Fyn serves as a major upstream regulator of pro-

inflammatory signaling involving PKCδ, MAP kinase and the NFκB pathways. Thus, Fyn 

could be exploited as a potential signaling node in the development of novel anti-

neuroinflammatory drug candidates for treating PD and other related neurodegenerative 

diseases with associated microglia-mediated pro-inflammatory processes. 
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Figures 

 

Figure 1: Fyn and PKCδ are differentially expressed in primary astrocytes and 

microglia. A, Representative image from immunocytochemical analysis for the microglial 

marker Iba-1 and the astrocytic marker GFAP on both, the magnetically purified and pour-off 

fractions of cells obtained post-separation revealed almost no astrocytic contamination in the 

samples. Scale bar, 200 microns. B, The colocalization image of Hoechst (nuclear stain) and 

Iba-1 images in 6 random image fields were obtained using the ImageJ plugin JACoP. C, The 

number of Hoechst-positive and colocalization-positive cells were counted using ImageJ. 

The magnetically purified samples were >97% positive for microglial cells. D, E, Western 
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Blot analyses of the magnetically separated cells revealed that the microglial fraction 

expressed higher amounts of the non-receptor Src kinase Fyn and the serine threonine kinase 

PKCδ than did the astrocyte-rich pour-off fraction (*p < 0.05, **p < 0.01). 
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Figure 2. Fyn kinase is rapidly activated in microglial cells and in the ventral midbrain 

following inflammogen stimulation. A, Fyn kinase assay shows that Fyn activity was 

highly induced in BV2 microglia treated with 1 µg/mL LPS for 10, 15 and 30 min. (*p < 

0.05, **p < 0.01). B, Immunoblots showing a concomitant rise in p-Y416 SFK levels in BV2 

cell lysates post-LPS treatment. C, D, Immunoprecipitation studies revealed that Fyn+/+ (WT 

Fyn), but not active loop tyrosine-mutant Fyn (Y417A Fyn), when overexpressed in BV2 

microglia, was activated following LPS stimulation. E, Treatment of primary microglia with 

LPS and F, TNFα for 15 and 30 min increased p-Y416 SFK levels in primary microglia 

obtained from wild-type Fyn+/+, but not Fyn-/- mice, identifying Fyn as the primary Src family 

kinase that was activated by inflammogen stimulation. G, Pretreatment of primary microglia 

with the TLR-signaling antagonist IAXO-101 or the TNFα receptor decoy Etanercept 

abolished Fyn activation by LPS or TNFα stimulation (p-44/42 phosphorylation used as 

marker for early microglial activation) H, Immunocytochemistry of LPS-treated WT primary 
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microglia showing that activated Fyn expression greatly increased and was localized 

preferentially to the membrane periphery of the microglial cell. Scale bar, 20 microns. I, 

Immunoblots of ventral midbrain lysates showed that peripheral administration of the 

inflammogen LPS (5 mg/kg) increased p-Y416 SFK levels in Fyn+/+, but not in Fyn-/- ventral 

midbrain tissues. 
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Figure 3. Fyn contributes to LPS- and TNFα-induced tyrosine phosphorylation and 

activation of PKCδ in primary microglia. Western blot analysis revealed that stimulation 

of microglia with LPS (A, B) and TNFα (C, D) induced a time-dependent increase in p-Y311 

PKCδ levels in wild type but not Fyn-/- microglia (*p < 0.05, **p < 0.01). E, LPS-induced 

PKCδ kinase activity was reduced in Fyn-/- microglial lysates in contrast to wild type lysates, 

as measured by PKCδ kinase assay. F, G, Co-immunoprecipitation studies showed that LPS 

stimulation elicited a physical interaction between Fyn and PKCδ in WT Fyn-transfected 

BV2 microglial cells. 
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Figure 4. The Fyn–PKCδ signaling axis mediates MAP kinase activation in microglial 

cells. A, B, Immunoblot analysis demonstrated diminished LPS-induced p38 and p44/42 (p-

ERK) phosphorylation in Fyn-/- and PKCδ-/- microglia (*p < 0.05, ***p < 0.001). C, D, 

Diminished TNFα-induced p38 and p44/42 (p-ERK) phosphorylation in Fyn-/- and PKCδ-/- 

microglia (*p < 0.05).  
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Figure 5. Fyn contributes to inflammogen-mediated NFκB pathway activation in 

microglial cells. A, B, Immunoblot analyses of whole cell lysates of wild-type and Fyn-/- 

microglia treated with LPS for 15-45 min revealed reduced IκBα degradation in Fyn-/- 

microglia at 15 min, and attenuated IκBα resynthesis at 30 and 45 min (*p < 0.05, **p < 

0.01). C, D, Cytosolic and nuclear fractionation of LPS- and TNFα-treated wild type and 

Fyn-/- microglia revealed diminished nuclear translocation of the p65 subunit of the NFκB 
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complex in the Fyn-/- microglia (**p < 0.01, ***p < 0.001). E, Immunocytochemistry also 

showed reduced nuclear p65 in LPS-treated Fyn-/- microglia. Scale bar, 50 microns. 
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Figure 6. LPS- or TNFα-induced proinflammatory cytokine production is suppressed in 

Fyn/PKCδ deficient microglia. A, Luminex analyses of supernatants from LPS-treated 

wild-type, PKCδ-/- and Fyn-/- microglia revealed reduced secretion of the pro-inflammatory 

cytokines IL-6, IL-12 and TNFα (**p < 0.01,  ***p < 0.001). B, Wild-type primary 
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microglia were transfected with non-targeting and Fyn-specific siRNA for 72 hours. 

Knockdown of Fyn was evaluated by Western blot. C, Fyn depleted microglia demonstrated 

diminished IL-6 and TNFα secretion in response to LPS stimulation (**p < 0.01, ***p < 

0.001). D, TNFα stimulation of Fyn-/- microglia reduced IL-6 and TNFα production in 

contrast to wild-type microglia. (**p < 0.01, ***p < 0.001). E, Immunoblots showing 

reduced TNFα levels in Fyn-deficient microglia after TNFα stimulation in contrast to wild-

type microglia. F, G, Overexpressing the FLAG-tagged activation loop tyrosine mutant of 

Fyn in BV2 microglia attenuated IL-6 and IL-12 production when the cells were treated with 

LPS, as shown by Luminex cytokine analysis (*p < 0.05, **p < 0.01 and ***p < 0.001). 
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Figure 7. Fyn plays a role in LPS-induced iNOS expression, nitrite production and 

neuroinflammatory marker expression. A, Griess nitrite measurement assay demonstrated 
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that LPS-induced nitrite production was reduced in Fyn-/- microglia (*p < 0.05, ***p < 

0.001). B, C, D, Diminished iNOS expression in LPS-treated Fyn-/- microglia (**p < 0.01). 

Scale bar, 100 microns. E, F, Reduced gp91phox and Iba-1 expression in LPS-treated Fyn-/- 

and PKCδ-/- microglia, as shown by immunoblotting analysis (*p < 0.05, **p < 0.01). 
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Figure 8. Fyn-/- and PKCδ-/- mice are resistant to LPS- and MPTP-induced 

neuroinflammatory responses. A, Wild-type, PKCδ-/- and Fyn-/- mice were injected 

intraperitoneally with 5 mg/kg LPS for 3 h. Striatal cytokine mRNA levels, assessed by q-RT 

PCR, showed significantly reduced induction of pro-IL-1β and TNFα mRNA levels in 

PKCδ-/- and Fyn-/- mice in contrast to wild-type mice (*p < 0.05, **p < 0.01 and ***p < 

0.001). B, The transitional stages of microglial activation, from ramified (inactivated, type A) 

to amoeboid (activated, types B, C and D), are shown by representative images. C, D, Iba-1-

DAB immunohistochemistry in MPTP-injected Fyn-/- and wild-type ventral midbrain sections 

demonstrated nigral microgliosis, assessed by quantification of microglial morphology, in the 

WT, but not the Fyn-/- sections. Scale bar, 75 microns (*p < 0.05, **p < 0.01). E, F, Fyn-/- 

mice showed diminished induction of the proinflammatory marker gp91phox in ventral 

midbrain lysates following the acute MPTP regimen (*p < 0.05). 
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Figure 9. Fyn-/- mice are protected against 6-OHDA-induced nigrostriatal dopaminergic 

neuronal deficits and microgliosis. A, TH-DAB immunohistochemistry in 6-OHDA-

injected Fyn-/- and wild-type mouse striatal sections. Scale bar, 1000 microns. B, Schematic 

diagram of a coronal section through the mouse striatum at the level of the injection. C, 

Significant preservation of 6-OHDA-induced degeneration of dopaminergic terminals is seen 

in the Fyn-/- mice in contrast to wild-type mice (**p < 0.01, ***p < 0.001). D, 

Immunofluorescence staining of 6-OHDA-injected Fyn-/- and wild-type ventral midbrain 

sections reveals diminished microgliosis and concomitant nigral neuroprotection in Fyn-/- 

mice after 6-OHDA administration, in contrast to the massive microgliosis and nigral 

dopaminergic neuronal death observed in the wild-type mice. Scale bar, 200 microns. 
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Figure 10. PKCδ-/- mice are resistant to 6-OHDA-induced nigrostriatal dopaminergic 

neuronal deficits and microgliosis. A, TH-DAB immunohistochemistry in 6-OHDA-

injected PKCδ-/- and wild-type mouse striatal sections. Scale bar, 1000 microns. B, Schematic 

diagram of a coronal section through the mouse striatum at the level of the injection. C, 

Significant preservation of dopaminergic terminals is seen in the 6-OHDA-treated PKCδ-/- 

mice in contrast to wild-type mice (*p < 0.05, **p < 0.01 and ***p < 0.001). D, 
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Immunofluorescence staining of 6-OHDA-injected PKCδ-/- and wild-type ventral midbrain 

sections reveals reduced nigral TH degeneration and microgliosis in PKCδ-/- mice after 6-

OHDA administration, in contrast to the wild-type  mice. Scale bar, 200 microns. E, High 

magnification image of 6-OHDA-injected PKCδ-/- and wild-type ventral midbrain sections. 

Scale bar, 50 microns. 

  



www.manaraa.com

104 

 

 

Figure 11. Diminished 6-OHDA-induced glial-neuronal contact (gliapse) formation in 

the Fyn-/- substantia nigra. A, C, Confocal Z stack maximum projection image analysis of 

ventral midbrain sections reveals a strongly increased number of microglial-neuronal 

contacts and appositions upon 6-OHDA treatment of Fyn+/+ but not Fyn-/- mice. Scale bar, 12 

microns B, D, Confocal Z stack images were rotated and optically sectioned along the Z 
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plane using Imaris software, allowing easy visualization of gliapse formation. Scale bar, 10 

microns E, Diagrams of Process-Body (Pr-B) and Body-Body (B-B) gliapses formed 

between dopaminergic neurons and microglia. F, Fyn ventral midbrain sections revealed 

significantly fewer gliapses formed per dopaminergic neuron in the SN (***p < 0.001). 
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Figure 12. Prolonged inflammogen stimulation induces Fyn upon microglial activation. 

A, B, Stimulation of primary microglia with LPS for 12 h and TNFα for 24 h increased Fyn 

expression, as evidenced by Western blotting (*p < 0.05). C, ICC analysis of Fyn expression. 

Scale bar, 20 microns. D, q-RT PCR analysis of Fyn mRNA levels in LPS-stimulated 

primary microglia and BV2 microglia revealed induction of Fyn at the message level (*p < 

0.05, **p < 0.01). E, Induction of Fyn promoter activity in primary microglia following LPS 

activation of wild-type primary microglia (*p < 0.05). F, Increased striatal Fyn mRNA levels 

were seen in the Fyn+/+ mice injected intraperitoneally with LPS (5 mg/kg) for 12 h, as 

assessed by q-RT PCR (**p < 0.01). 
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CHAPTER 3. FYN KINASE CONTRIBUTES TO HUMAN ALPHA-SYNUCLEIN-
INDUCED PRIMING AND ACTIVATION OF THE NLRP3 INFLAMMASOME IN 

MICROGLIA, LEADING TO EXACERBATED STERILE INFLAMMATION 
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Abstract 

Persistent neuroinflammation is recognized as a major pathophysiological contributor 

to the progression of Parkinson’s disease (PD). Microglia, the resident macrophagic cells of 

the brain, mediate chronic neuroinflammation through the production of pro-inflammatory 

factors. Identifying novel molecular signaling events that perpetuate sustained microglial 

activation, which in turn contributes to progressive neurodegeneration in PD could 

potentially identify drug targets that halt its progression. Hyperactivation of the NLRP3 

inflammasome, traditionally shown to be involved in the innate immune response to 

microbial pathogens and cellular stress, has recently been demonstrated to contribute to the 

pathology of Alzheimer’s disease. However, its role in PD pathogenesis is yet to be 

established. The signaling mechanisms that govern microglial NLRP3 inflammasome 
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signaling are poorly characterized. Herein, we show that aggregated human α-synuclein, the 

major component of Lewy bodies, can activate the inflammasome pathway in microglia 

through the activation of the non-receptor Src family kinase - Fyn. Aggregated α-synuclein 

treatment amplified LPS-induced priming of the NLRP3 inflammasome in murine primary 

microglia, synergistically promoting NLRP3 and pro-IL-1β induction, as well as subsequent 

IL-1β processing and Caspase-1 activation, culminating in the secretion of cleaved IL-1β 

into the supernatant. LPS primed Fyn-/- microglia showed diminished α-synuclein-induced 

NLRP3 inflammasome activation when compared to wild-type (WT) microglia. We then 

demonstrate that aggregated α-synuclein can mediate both priming and activation of the 

NLRP3 inflammasome independent of LPS stimulation. Fyn was found to be rapidly 

activated in microglial cells upon aggregated α-synuclein stimulation, and contributed to 

PKCδ activation and subsequent NF-κB activation, which induced pro-IL-1β and NLRP3 

mRNA and protein levels. Strikingly, Fyn was also found to play a role in the import of α-

synuclein into microglial cells, contributing to the generation of mitochondrial reactive 

oxygen species (MitoROS). We observed diminished production of IL-1β and other pro-

inflammatory cytokines from Fyn-deficient microglia in response to aggregated α-synuclein 

stimulation. Taken together, our studies show for the first time that aggregated α-synuclein 

can prime and activate the NLRP3 inflammasome, and that Fyn contributes to both these 

processes. 

 

Introduction 

Parkinson’s Disease (PD) is a neurodegenerative disorder characterized by 

progressive motor deficits and the death of dopaminergic neurons within the nigrostriatal 
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tract, which project from the Substantia Nigra (SN) to the striatum. Several causative factors 

contribute to PD-associated neurodegeneration, including mitochondrial dysfunction, 

oxidative stress and proteasomal impairment (Jenner and Olanow, 2006; Levy et al., 2009; 

Olanow, 2007; Przedborski, 2005).  Currently, there is no cure for PD and existing treatments 

focus on controlling the symptoms, rather than preventing the progression of the disease 

(Jankovic and Aguilar, 2008). 

Recently, sterile inflammation, mediated primarily by resident brain microglia and 

infiltrating monocytes, has been identified and gained traction as both an important abettor of 

neuron loss that contributes to the progressive nature of most neurodegenerative diseases, 

including PD, as well as an attractive drug target for neurodegenerative disease therapy. 

Various lines of evidence, including cell culture, animal models and post-mortem tissue 

analysis have implicated sustained neuroinflammation in being critical to PD progression 

(Block et al., 2007; Glass et al., 2010; Imamura et al., 2003; Tansey and Goldberg, 2010).  

Inflammasomes are large, multimeric protein complexes that comprise of a pattern-

recognition receptor such as the nucleotide-binding oligomerization domain (NOD) like 

receptors (NLRs), the adaptor protein ASC and Caspase-1. Inflammasome assembly is 

triggered by a variety of stimuli and culminates in the activation of Caspase-1, which then 

cleaves the inflammogen-inducible pro-Interleukin-1β (pro-IL-1β) to mature IL-1β (Latz et 

al., 2013; Walsh et al., 2014). The NLRP1b and NLRC4 inflammasomes can be activated 

independent of ASC (Lamkanfi and Dixit, 2014). 

The NLRP3 inflammasome is the most widely studied mediator of Caspase-1 

activation. Activation of this inflammasome is a two-step process; the first step, priming, 

involves the inflammogen-mediated induction of the proteins NLRP3 and pro-IL-1β by 
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activating the NF-κB pathway. The second step, known as activation, requires a second 

stimulus called a danger signal, which, through the disruption of cytosolic homeostasis, 

brings about the assembly of the inflammasome components into a functional complex, 

leading to the activation of Caspase-1 and subsequent Caspase-1-mediated cleavage of pro-

IL-1β to mature IL-1β, which is secreted. This two-step mechanism is hypothesized to serve 

as a checkpoint to prevent unabated release of IL-1β. The NLRP3 inflammasome-associated 

hypersecretion of IL-1β is, in turn, linked to the pathology of various inflammatory diseases, 

including Alzheimer’s disease (Heneka et al., 2013), diabetes (Lee et al., 2013) and 

atherosclerosis (Duewell et al., 2010; Sheedy et al., 2013). IL-1β has been shown to directly 

kill neurons and also increase pathological neuronal Tau phosphorylation (Li et al., 2003; 

Wang et al., 2005) and contribute to pro-inflammatory signaling in glial cells (Moynagh, 

2005). Increased IL-1β and cleaved Caspase-1 levels have already been demonstrated in PD 

patient tissues, but these studies were published before it was demonstrated that IL-1β 

processing is mediated by inflammasome complexes (Mogi et al., 1996; Mogi et al., 2000). 

The NLRP3 inflammasome, classically implicated in the response to cellular stress or 

microbial pathogens in peripheral immune cells, was first shown to be activated in microglia 

when fibrilar β-amyloid was used as a danger signal to activate them. This was also the first 

time that the NLRP3 inflammasome activation was shown to be mediated by a misfolded 

protein (Halle et al., 2008).  

Fyn is a non-receptor Src family tyrosine kinase. Within the peripheral immune 

system, it was demonstrated to mediate T cell and mast cell activation (Gomez et al., 2005; 

Palacios and Weiss, 2004). Recent studies also demonstrate that it contributes to Natural 

Killer cell activation (Rajasekaran et al., 2013). It is expressed by most cells within the 
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Central Nervous System (CNS), and has been shown to mediate β-amyloid-induced 

apoptosis in cortical neurons (Lambert et al., 1998), as well as contribute to astrocytic 

migration (Dey et al., 2008) and the differentiation of oligodendrocytes (Sperber et al., 2001). 

It was also shown to contribute to the activation of murine macrophages and microglia in 

response to fibrilar β-amyloid (Moore et al., 2002; Stuart et al., 2007). Our group has 

demonstrated how activated Fyn contributes to oxidative stress-induced pro-apoptotic 

signaling in N27 dopaminergic neuronal cells, as well as in inflammogen-activated 

microglial cells in in-vitro and in-vivo models of PD via PKCδ tyrosine phosphorylation 

(Kaul et al., 2005; Panicker et al., 2015; Saminathan et al., 2011).  To the best of our 

knowledge, no study exists on the role that Fyn plays in the activation of the NLRP3 

inflammasome in any cell type. Although it was demonstrated that PKCδ plays a crucial role 

in the activation of the NLRC4 inflammasome via S533 phosphorylation activation (Qu et 

al., 2012), this is also the first study that characterizes the role that this protein plays in 

NLRP3 inflammasome activation. 

The α-synuclein gene (SNCA), was the first gene that was linked to autosomal 

recessive PD (AR-PD). Missense point mutations or triplication of the α-synuclein gene can 

both cause autosomal dominant familial PD or PD-like conditions (Allen Reish and 

Standaert, 2015; Appel-Cresswell et al., 2013; Kruger et al., 1998; Lesage et al., 2013; 

Pasanen et al., 2014; Polymeropoulos et al., 1997; Zarranz et al., 2004). α-synuclein is a pre-

synaptic protein, which is predominantly expressed by neurons throughout the brain. It has 

the predilection to form fibrils, which under pathogenic conditions may form aggregates of 

varying degrees of organization. It constitutes the major component of Lewy bodies, the 

neuropathological hallmark of PD. A fascinating theory that has gained support and credence 



www.manaraa.com

112 

 

in recent times postulates that α-synuclein, in its pathogenic forms, can propagate from cell 

to cell in a prionic manner, seeding the aggregation of non-pathogenic α-synuclein to form 

pathogenic aggregates, which can propagate inflammation and cell death in a progressive 

manner (Luk et al., 2012a; Luk et al., 2012b; Volpicelli-Daley et al., 2011). 

The signaling pathways through which α-synuclein mediates microglial activation 

have recently begun to be elucidated. It was demonstrated that recombinant endotoxin-free 

and aggregated α-synuclein was able to elicit the production of pro-inflammatory cytokines, 

including IL-1β in unprimed microglia, but the NLRP3 inflammasome was not selectively 

identified as the causative factor for this event (Boza-Serrano et al., 2014; Lee et al., 2010; 

Su et al., 2008). α-synuclein was also demonstrated to effect IL-1β production in monocytes 

(Codolo et al., 2013; Gustot et al., 2015). Though infiltrating monocytes contribute to the 

sterile inflammation in neurodegenerative diseases, they have constitutively activated 

Caspase-1, which enables them to produce Il-1β in response to a Toll-like receptor (TLR) 

ligand such as Lipopolysaccharide (LPS), without requiring an intervening danger signal step 

(Netea et al., 2009).  Because of this, pathways identified using these systems may not have 

significance to resident microglial cells. AAV-mediated overexpression of synuclein in the 

SN was also demonstrated to result in elevated striatal cytokine production, including IL-1β 

and TNFα, but again, inflammasomes were not directly implicated (Chung et al., 2009). We 

demonstrate conclusively that aggregated α-synuclein is able to both prime and activate the 

NLRP3 inflammasome in microglia.  

To the best of our knowledge, we are the first group to conclusively, through 

immunoprecipitation, demonstrate interaction between α-synuclein and its receptors TLR2 

and CD36. We also demonstrate here that α-synuclein stimulation of microglia results in the 



www.manaraa.com

113 

 

association of CD36 with the non-receptor Src family tyrosine kinase Fyn, which 

phosphorylates PKCδ and subsequently contributes to PKCδ-dependent priming of the 

NLRP3 inflammasome as well as PKCδ-independent α-synuclein import into microglia, 

leading to mitoROS generation and subsequent mitochondrial dysfunction.  

 

Materials And Methods 

Chemicals and reagents  

Dulbecco’s modified Eagle’s medium/F-12 (DMEM/F-12), ascorbic acid, RPMI, 

fetal bovine serum (FBS), L-glutamine, Hoechst nuclear stain, penicillin, streptomycin and 

other cell culture reagents were purchased from Invitrogen (Gaithersburg, MD). L929 

conditioned medium was a kind gift from Douglas Jones at Iowa State University. 

Recombinant TNFα was purchased from Peprotech (Rocky Hill, NJ), and LPS (E. coli 

0111:B4, Endotoxin content 6.6000000 EU/mg) and 6-OHDA were purchased from Sigma 

(St. Louis, MO). SN50 and the rabbit antibody to human α-synuclein were obtained from 

EMD Millipore (Billerica, Massachusetts). The Mitotracker Red and MitoSOX dyes were 

obtained from Life Technologies (Grand Island, NY). Goat IL-1β, rat NLRP3, and goat CD-

36 and TLR-2 antibodies were obtained from R & D systems. Mouse NLRP3, Mouse 

Caspase-1 and rabbit ASC antibodies were obtained from Adipogen. The mouse Fyn and 

GAPDH antibodies was purchased from Thermo Scientific (Waltham, MA). Antibodies for 

rabbit Fyn, PKCδ, p-Y311 PKCδ, IκBα, Lamin-B, NOS2 (iNOS) and mouse Tubulin and 

human α-synuclein were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). 

Antibodies against rabbit p-Src family kinase Y416 (p-Y416 SFK), native p65, were 

purchased from Cell Signaling (Beverly, MA). The TH antibody was purchased from 
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Chemicon (Temecula, CA). Mouse M2 FLAG and β-actin antibodies, as well as the rabbit β-

actin antibody were purchased from Sigma. Rabbit and goat Iba-1 antibodies were purchased 

from Wako Chemicals (Richmond, VA) and Abcam (Cambridge, MA), respectively. 32P-

ATP was purchased from Perkin Elmer (Boston, MA) and the histone substrate from Sigma. 

The Bradford protein assay kit was purchased from Bio-Rad Laboratories (Hercules, CA). 

FLAG-tagged human Wild Type (WT) Fyn and Y417A mutant Fyn constructs were obtained 

as described previously (Kaspar and Jaiswal, 2011). The rat Caspase-11 antibody was 

purchased from Novus Biologicals. The WT and Caspase-1-/- microglial cell lines, as well as 

the ASC-CFP cell line were a gift from Dr. Douglas Golenbock at the University of 

Massachusetts. Femurs from WT, NLRP3-/-, ASC-/-, Caspase-1-/- and Caspase-11-/- mice were 

obtained from Dr. Jenny PY Ting at the University of North Carolina. 

 

Human α-synuclein purification, aggregation and removal of endotoxin content 

BL21 (DE3) cells transformed with a pT7-7 plasmid encoding WT human α-

synuclein were freshly grown on an ampicillin agar plate; then a single colony was 

transferred to 10 mL of LB medium with 100 μg/mL ampicillin incubated overnight at 37°C 

with shaking (pre-culture). The next day, the pre-culture was used to inoculate 1L of 

LB/ampicillin medium. When the OD600 of the cultures reached 0.5, protein expression was 

induced with 1 mM isopropyl β-D-1-thiogalactopyranoside (Invitrogen), and the cells were 

further incubated at 37°C for 8 h before harvesting by centrifugation. Lysis was performed 

on ice, by resuspending the cell pellet in 10 mM Tris-HCl, pH 8.0, 1 mM EDTA, and 1 

mM phenylmethylsulfonyl fluoride (PMSF) and ultrasonicated with 30 sec pulses followed 

by a 30 sec pause, for a total ultrasonication time of 2 min. Lysates were finally filtered 
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through 0.22 μm membranes and loaded onto a Bio-Rad UNO Q6 ion exchange column on 

BioLogic DuoFlow (Bio-Rad) system chromatography system. Fractions collected during 

elution with a salt gradient were assayed for the presence of α-synuclein protein by SDS-

PAGE followed by Coomassie staining. Fractions containing α-synuclein were pooled, 

dialyzed against 10 mM HEPES, 50 mM NaCl, pH 7.4 and protein concentration determined 

by Bradford assay. 

 

Primary microglial cultures and treatments 

Primary microglial cultures were prepared from WT, Fyn-/- and PKCδ-/- postnatal day 

1 (P1) mouse pups as described previously with slight modifications (Gordon et al., 2011). 

Briefly, mouse brains were harvested, meninges removed and then placed in DMEM-F12 

supplemented with 10% heat-inactivated FBS, 50 U/mL penicillin, 50 µg/mL streptomycin, 

2mM L-glutamine, 100 µM nonessential amino acids and 2 mM sodium pyruvate. Brain 

tissues were then incubated in 0.25% trypsin-EDTA for 15 min with gentle agitation. The 

trypsin reaction was stopped by adding double the volume of DMEM/ F12 complete medium 

and then washing brain tissues three times. Tissues were then triturated gently to prepare a 

single-cell suspension, which was then passed through a 70 µm nylon mesh cell strainer to 

remove tissue debris and aggregates. The cell suspension was then made up in DMEM/F12 

complete medium and seeded into T-75 flasks, which were incubated in humidified 5% CO2 

at 37°C. The medium was changed after 5–6 d, and the mixed glial cells were grown to 

confluence. Microglial cells were separated from confluent mixed glial cultures by 

differential adherence and magnetic separation to more than 97% purity and then were 

allowed to recover for 48 h after plating. Primary microglia were treated in DMEM/F12 
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complete medium containing 2% FBS. Microglia were primed with 1 µg/mL LPS for 3 h, is 

a dose and time point which has been used in several published studies (Halle et al., 2008). 

For signaling experiments, the protocol used by Stuart et. al. (Stuart et al., 2007) was used 

with a small modification. For this, the primary microglial cells were kept in 2% DMEM/F12 

complete medium for 5 h at 37°C before treatment. The microglial cells were treated with 

3.5-7 µg/mL aggregated α-synuclein, which is a similar dose used by several published 

articles (Boza-Serrano et al., 2014; Kim et al., 2013). For immunycytochemistry studies, 

microglia were obtained by the shake-off method as previously described (Gordon et al., 

2011). 

 

Primary BMDM macrophage and culture 

A sterile blade was used to cut the bone epiphyses off from the femurs exposing the 

marrow cavity. A 10 mL syringe with a 30 ga ½ inch needle was filled with 10% Fetal 

Bovine Serum (FBS) containing DMEM. This medium was flushed through the bone and the 

marrow was collected a sterile 14 mL falcon tube. The marrow was centrifuged at 250g for 

15 min at 4°C. Pellets were resuspended in bone marrow macrophage medium (DMEM 

medium containing 20% FBS, 30% L929 cell conditioned medium, Penicillin/Streptomycin, 

Sodium pyruvate). 15 X 106 cells were plated out in (15 mm x 150 mm) Petri dishes. 

Additional bone marrow macrophage medium was supplemented on day 3. The cells were 

kept at 37°C and 5% CO2 for 6 d. Adherent differentiated macrophages were trypsinized on 

day 6 and used for experiments.  
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Immunoblotting 

Lysates were prepared using modified RIPA buffer and were normalized for equal 

amounts of protein using the Bradford protein assay kit. Equal amounts of protein (6-10 µg 

for nuclear lysates and 10-25 µg for cell lysates) were loaded for each sample and separated 

on either 12% or 15% SDS-PAGE gels depending on the molecular weight of the target 

protein. After separation, proteins were transferred to a nitrocellulose membrane and the 

nonspecific binding sites were blocked for 1 h using a blocking buffer specifically 

formulated for fluorescent Western blotting (Rockland Immunochemicals). Membranes were 

then probed with the respective primary antibodies for 3 h at room temperature or overnight 

at 4°C. After incubation, the membranes were washed 7 times with PBS containing 0.05% 

Tween 20 and then Secondary IR-680-conjugated anti-mouse (1:10,000, goat anti-mouse, 

Molecular Probes) and IR-800 conjugated anti rabbit (1:10,000, goat anti-rabbit, Rockland) 

were used for antibody detection with the Odyssey IR imaging system (LiCor). Membranes 

were visualized on the Odyssey infrared imaging system. Antibodies for GAPDH, β-actin 

and Tubulin were used as loading controls.  Antibodies against Lamin B were used as the 

loading control for nuclear lysates. Immunoblots with cell supernatants, 400 μL methanol 

and 100 μL chloroform were added to 400 μL of cell supernatants obtained post-treatment 

from microglial cells treated in 12 well plates. The samples were vortexed vigorously for 30 

sec. They were then centrifuged at 13,000g for 5 min. The aqueous phase was removed using 

vacuum.  400 μL of methanol was added to each sample. The samples were vortexed 

vigorously. The samples were centrifuged at 13,000g for 5 min. Supernatant methanol was 

removed by vacuum. The pellets were dried for 5-10 min at 55°C and were subsequently 
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reconstituted in 32 μL of 1× SDS sample buffer + 8 μL β mercapthoethanol. The samples 

were then vortexed, boiled for 5 min and used for immunoblotting for IL-1β. 

 

qPCR 
The RNA extraction protocol was adapted and modified from published protocols 

(Seo et al., 2014). 2.5 X 106 microglia per treatment group obtained post separation were 

plated in a 6 well plate and after treatment RNA was extracted using the trizol chloroform 

extraction method. 1 µg of RNA was converted to cDNA using High Capacity cDNA 

Reverse Transcription Kit from Applied Biosystems (#4368814) following the 

manufacturer’s protocol. Quantitative RT-PCR was performed on the following genes using 

SYBRGreen Mastermix from Qiagen (#208056)- NLRP3 forward-

‘TGCTCTTCACTGCTATCAAGCCCT’, NLRP3 reverse-

‘ACAAGCCTTTGCTCCAGACCCTAT’ (synthesized in Iowa State University DNA 

facility) & IL-1β-Qiagen QuantiTect Primer Assay (QT01048355). 18SrRNA (Qiagen 

catalog #PPM57735E) was used as the house keeping gene for all the qPCR experiments. No 

template controls (NTCs) and dissociation curves were obtained for every experiments to 

make sure there was no cross contamination.  

 

Co-immunoprecipitation studies 

5 X 106 primary microglia per treatment group were treated with α-synuclein or 

vehicle for 30 min. Lysates were prepared using the TNE buffer. Cell lysates were prepared 

in TNE buffer (10 mM Tris-HCl at pH 7.5, 1% Nonidet P-40, 0.15 M NaCl, 1 mM EDTA 

and 1:100 protease inhibitor mixture). Pellets were resuspended in TNE buffer and were kept 

on ice for 30 min. The lysates were then centrifuged at 17,400g for 35 min at 4°C. The 
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supernatant protein concentration was measured and normalized between samples. 

Approximately 50 µg protein was used as the input fraction. For immunoprecipitation 

analysis, 400-500 µg of protein per sample in 500 µL TNE buffer was used. 5 µg of goat 

polyclonal TLR2 or CD36 antibody were added to the lysates and the samples were set on an 

orbital shaker overnight at 4°C. The next day, protein G Sepharose beads were added to each 

sample. The samples were set on an orbital shaker overnight at 4°C. Protein G beads were 

collected by centrifugation at 2000g for 5 min and were washed four times with TNE buffer. 

The bound proteins were eluted by boiling in 2 protein loading dye for 5 min. Immunoblots 

were performed on 12% SDS-PAGE gels as described in the Immunoblots section. 

 

Caspase-1 assay 

WT and Fyn-/- microglial cells were plated out onto PDL-coated 96 well plates at 

150,000 cells per well. Cells were treated with α-synuclein at the pre-specified doses for 2 h 

post LPS priming. The FLICA dye was added in PBS for 30 min at 37°C. The cells were 

washed in PBS 3 times post treatment and the fluorescence read as per the manufacturer’s 

instructions. 

 

Nuclear and cytoplasmic fractionation  

Nuclear and cytoplasmic fractions were performed using the NE-PER Kit (Thermo 

Scientific) as previously described (Jin et al., 2011). Briefly, 5 X 106 cells were treated with 

α-synuclein for 30 min. CER1 reagent (150-200 μL) was used per sample to extract the 

cytoplasmic fraction and 45 μL of NER reagent was used to extract the nuclear fraction.  
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Nitric oxide detection  

Nitric oxide production by primary microglia was measured indirectly by 

quantification of nitrite in the supernatant using the Griess reagent (Sigma Aldrich). 

Microglia were plated in poly-D-lysine-coated 96-well plates at 1 X 105 cells/well. Cells 

were treated with α-synuclein for 24 h post priming with LPS for 3 h and after 100 μL of 

supernatant was collected from each well, an equal volume of the Griess reagent was added. 

The samples were incubated on a plate shaker at room temperature for 15 min until a stable 

color was obtained. The absorbance at 540 nm was measured using a Synergy 2 multi-mode 

microplate reader (BioTek Instruments) and the nitrite concentration was determined from a 

sodium nitrite standard curve. 

 

Multiplex cytokine Luminex immunoassays 

Primary microglia obtained from WT, PKCδ-/- and Fyn-/- mice were seeded in poly-D-

lysine-coated 96 well plates at 1 X 105 cells/well. The cells were treated with α-synuclein for 

24 h. After treatment, 50 µL of supernatant from each well was collected and frozen 

at -80°C. The levels of cytokines and chemokines in the supernatants were determined using 

the Luminex bead-based immunoassay platform (Vignali 2000) and pre-validated multiplex 

kits (Milliplex mouse cytokine panel – Millipore) according to the manufacturer’s 

instructions. 

 

Transfections of primary microglia 

The pre-designed, on-target plus SMART pool Fyn siRNA (a combination of four 

siRNAs, Cat. No. LQ-040112-00-0002) and scrambled siRNA (Cat. No. D-001210-03-05) 
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were purchased from Dharmacon (Lafayette, CO). We carried out siRNA transfections in 

primary mouse microglial cells with Lipofectamine 3000 reagent according to the 

manufacturer's protocol. Briefly, primary microglia were plated at 2 X 106 cells/well in 6-

well plates one day before transfection. For each well, 300 pmol of Fyn siRNA pool (75 

pmol each) or an equal amount of scrambled siRNA mixed with 5 μL of Lipofectamine 3000 

were added to the cells. 72 h after the initial transfection, cells were treated with aggregated 

α-synuclein for 4 h. Lysates were prepared in modified RIPA buffer as mentioned in the 

Immunoblotting section. Lysates checked for the expression of pro-IL-1β and Fyn. 

Transfection of primary microglia with WT Fyn-FLAG, Y417A Fyn-FLAG plasmid 

constructs was also performed using 5 μL of Lipofectamine 3000, but this was left on for 48 

h. FLAG immunoblots were performed to check for successful transfections. 

 

Immunofluorescence  

Immunofluorescence studies in primary microglia were performed according to 

previously published protocols with some modifications (Gordon et al., 2011). Briefly, cells 

were plated out onto poly-D-lysine-coated coverslips. At the end of treatments, cells were 

fixed with 4% PFA, washed in PBS and incubated in blocking buffer (PBS containing 1.5% 

BSA, 0.5% Triton X-100 and 0.05% Tween 20) for 1 h at room temperature. The coverslips 

were then incubated overnight at 4°C with respective primary antibodies diluted in PBS 

containing 1% BSA. Samples were then washed several times in PBS and incubated with 

Alexa 488 and 555 dye-conjugated secondary antibodies. The nuclei were labeled with 

Hoechst stain (10 μg/mL) and coverslips were mounted with Fluoromount medium (Sigma 

Aldrich) on glass slides for visualization. ASC-CFP fluorescence was imaged by assessing 
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the natural fluorescence using the CFP filter using the Leica DMIRE2 confocal microscope 

objectives.  

 

Mitochondrial ROS measurement 

Mitochondrial ROS generation was quantified using the MitoSOX red fluorescent 

indicator. WT and Fyn-/- microglia were plated out into coverslips at 150,000 cells per well. 

α-synuclein was added to the cells., The MitoSOX probe was added at the same time, to a 

final concentration of 1 μM. Fluorescence expressed by the generated mitochondrial 

superoxides were measured every hour for 0-12 hours using Cytation 3 Cell Imaging Multi-

Mode Reader as per the manufacturer’s instructions (BioTek- Winooski, VT).  

 

Mitochondrial visualization 

Microglia obtained via shale-off method were plated out onto PDL coated cover slips. 

After treatment under various paradigms, 300 μL of 166 nM CMXROS MitoTracker red dye 

diluted in serum-free DMEM/F12 media was added and incubated at 37°C for 13 min. After 

incubation, wells were gently washed with PBS 3-5 times and then fixed in 4% PFA for 30 

min. The wells were washed with PBS 3 times. After this, immunocytochemistry for Iba-1 

was performed as described in the immunofluorescence section. 

 

Data analysis  

Data analysis was performed using Prism 4.0 (GraphPad Software, San Diego, CA). 

The data was initially analyzed using one-way ANOVA and Bonferroni's post-test to 
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compare the means of treatment groups. Differences of p<0.05 were considered statistically 

significant. Student's t-test was used when comparing two groups 

 

Results 

Aggregated human α-synuclein acts as an efficient danger signal of the NLRP3 

inflammasome, effecting IL-1β  maturation and release 

Previous studies have demonstrated that misfolded proteins can activate the NLRP3 

inflammasome in microglia (Hafner-Bratkovic et al., 2012; Halle et al., 2008). Human α-

synuclein was obtained and purified as described in the Methods section. Aggregation of α-

synuclein was performed as previously described (Zhang et al., 2005). LPS-primed primary 

murine microglia were treated with α-synuclein for 24 h, with or without the pre-treatment of 

the pan-Caspase inhibitor ZVAD-FMK or the Caspase-1 specific inhibitor ZYVAD-FMK. α-

synuclein treatment sharply induced IL-1β cleavage and secretion, which was reduced in the 

group pre-treated with the Caspase inhibitors (Figure 1A). There was no significant change in 

the secretion/production of TNFα in the α-synuclein treated cells and only a marginal 

reduction of TNFα in the Caspase-1 inhibitor pre-treated groups. Next, we treated LPS-

primed bone marrow-derived macrophages (BMDMs) from WT, NLRP3-/-, ASC-/-, Caspase-

1-/- and Caspase-11-/- mice with aggregated human α-synuclein for 24 h (Figure 1B). There 

was a dramatic reduction in the secretion of IL-1β from NLRP3, ASC and Caspase-1 

deficient, but not Caspase-11 deficient macrophages (Caspase-11-/- macrophages were used 

as a control, since the Caspase-1-/- mouse line inherently also lacks Caspase-11). There was 

no change in the levels of supernatant TNFα in any of the genotypes. We also confirmed that 

none of these proteins played a role in the priming of the NLRP3 inflammasome by assessing 
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the levels of pro-IL-1β produced upon LPS treatment by immunoblot (Figure 1C).  Next, we 

assessed the inflammasome activating ability of aggregated human α-synuclein by utilizing 

the ASC-CFP reporter cell line. These cells overexpress ASC tagged with cyan fluorescent 

protein (CFP). Upon the activation of the NLRP3 inflammasome, the ASC coalesces to form 

a single speck within each cell. The number of ASC positive specks can be counted and used 

as a readout of inflammasome activation. ASC-CFP cells were primed with LPS and treated 

with aggregated synuclein for 2 h. Endogenous CFP fluorescence was assessed. In the 

synuclein treated group, specks of ASC were observed, indicating inflammasome activation 

(Figure 1D). These results indicate that aggregated α-synuclein serves as an efficient danger 

signal to activate the NLRP3 inflammasome. 

 

Fyn kinase contributes to LPS and TNFα  mediated priming of the NLRP3 

inflammasome 

Recently, we described how inflammogen stimulation of microglia resulted in rapid 

Fyn activation, and Fyn-dependent NF-κB pathway activation, which contributed to LPS and 

TNFα-mediated cytokine production and pro-inflammatory signaling (Panicker et al., 2015). 

Accordingly, we assessed the role of Fyn in LPS and TNFα-mediated priming of the NLRP3 

inflammasome. WT and Fyn-/- microglia were primed with various doses of the 

aforementioned inflammogens, and inflammasome priming was assessed by blotting for pro-

IL-1β and NLRP3. As expected, LPS and TNFα elicited a dose dependent induction of pro-

IL-1β and NLRP3 levels in WT microglia, but to a significantly lower extent in the Fyn-/- 

microglia (Figure 2A). We next treated WT and Fyn-/- mice with 5 mg/kg LPS for 24 h, and 
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checked for serum IL-1β via Luminex. The LPS-mediated serum IL-1β production in the 

Fyn-/- mice was strongly attenuated (Figure 2B). 

 

α-synuclein amplifies LPS induced priming of the NLRP3 inflammasome in a Fyn 

dependent manner 

The first step in the activation process of the NLRP3 inflammasome is priming, 

which entails the NF-κB-p65-mediated induction of pro-IL-1β and NLRP3, which occurs 

subsequent to the engagement of appropriate pro-inflammatory ligands or inflammogens to 

their respective receptors (Hayden and Ghosh, 2004). Having established that α-synuclein 

could act as an efficient danger signal of the inflammasome, we sought to elucidate the 

mechanisms through which it might activate the NLRP3 inflammasome. Immunoblot 

analysis of LPS primed, α-synuclein treated WT and Fyn-/- microglia revealed that synuclein 

treatment actually amplified the LPS mediated induction of pro-IL-1β and NLRP3 levels, 

and did so to a statistically lower extent in the Fyn-/- microglia (Fig 3A), leading us to 

hypothesize that aggregated α-synuclein directly potentiated LPS mediated priming by 

further activating the NF-κB pathway). The synuclein-mediated induction of pro-IL-1β and 

NLRP3 in microglia was abolished in cells pre-treated (post LPS priming and before α-

synuclein treatment) with SN-50, an NF-κB inhibitor (Figure 3B, C). We next checked the 

induction of pro-IL-1β and NLRP3 mRNAs in LPS and LPS + α-synuclein treated WT and 

Fyn-/- microglia. α-synuclein treatment effected the induction of pro-IL-1β and NLRP3 

mRNAs in the WT microglia, but the levels of the respective mRNA in the Fyn-/- microglia 

were consistently lower (Figure 3D). The well-utilized FLICA assay was then employed to 

assess the α-synuclein-mediated induction of Caspase-1 activity in primed WT and Fyn-/- 
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microglia. We discovered that Caspase-1 activity was strongly induced in WT microglia, but 

not at all in Fyn deficient microglia, strengthening our posit that Fyn played a role in the 

inflammasome activation (Figure 3E). The α-synuclein-mediated secretion of IL-1β and 

various other pro-inflammatory cytokines was also diminished in Fyn-/- microglia (Figure 

3F). NOS2 is the rate-limiting enzyme that mediates nitrite production in various immune 

cells including microglia. It has previously been shown to be induced in the APP/PS1 mice 

(Heneka et al., 2013). We show that α-synuclein treatment of LPS primed microglia also 

significantly elicited the induction of NOS2 and increase in supernatant nitrite levels in WT 

but did so to a lower extent in the Fyn-/- microglia (Figure 3G). Taken together, our results 

indicate that aggregated human synuclein amplifies LPS-induced priming, while 

simultaneously acting as a danger signal of the NLRP3 inflammasome, culminating in the 

release of mature IL-1β and nitrite, in a signaling pathway that utilizes Fyn kinase. 

 

Aggregated human α-synuclein primes and activates the NLRP3 inflammasome, 

resulting in IL-1β processing and secretion 

The current model of the NLRP3 inflammasome postulates a two-step mechanism, 

with a TLR or TNFR1 ligand acting as an initial signal to induce the expression of pro-IL-1β 

and NLRP3 proteins and a subsequent second signal that effects lysosomal rupture, 

mitochondrial ROS generation and/or K+ efflux that acts as a danger signal, resulting in the 

assembly and activation of the inflammasome complex, and the processing and secretion of 

IL-1β into the cell supernatant. Since we observed that α-synuclein can act as an efficient 

danger signal of the inflammasome, and can also amplify LPS mediated induction of the 

NLRP3 and pro-IL-1β at the message and protein level, we wondered if it could activate the 
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NLRP3 inflammasome independent of an LPS-mediated priming step. Unprimed, 

immortalized WT and Caspase1-/- microglial cells were treated with aggregated α-synuclein 

for 4 h and the levels of pro-IL-1β and NLRP3 assessed via immunoblot. Aggregated α-

synuclein effected the induction of pro-IL-1β and NLRP3 to equivalent levels in both cell 

types (Figure 4A). It also brought about the secretion of IL-1β in the WT, but to a strikingly 

lower extent, in the Caspase-1 deficient microglial cells. The secretion of IL-1β could also be 

inhibited by pre-treatment with Saracatinib, a Fyn inhibitor in a dose-dependent manner 

(Figure 4B). We next utilized primary bone marrow-derived macrophages from WT, NLRP3-

/-, ASC-/-, Caspase-1-/- and Caspase-11-/- mice and checked for the ability of α-synuclein to 

induce NLRP3 inflammasome activation in them. As expected, we saw no difference in the 

ability of macrophages of all aforementioned genotypes to induce pro-IL-1β and import α-

synuclein. However, the α-synuclein-mediated processing of Caspase-1 was almost 

completely absent in ASC-/-, NLRP3-/- and Caspase-1-/- macrophages (Figure 4C). Supernatant 

analysis of unprimed macrophages treated with α-synuclein for 12 h showed that α-synuclein 

elicited robust IL-1β production from WT macrophages, and this production was severely 

diminished in the NLRP3-/-, ASC-/- and Caspase-1-/- macrophages and was largely restored in 

the Caspase-11-/- macrophages (Figure 4D). The α-synuclein-mediated TNFα production was 

not statistically different in any of the cell types. 

 

Aggregated α-synuclein treatment rapidly activates Fyn. 

We then sought to elucidate the signaling mechanism through which α-synuclein activated 

the NLRP3 inflammasome in microglia. Various studies have indirectly implicated disparate 

receptors in binding to and mediating α-synuclein signaling; TLR2 was described to be 
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essential for α-synuclein induced pro-inflammatory signaling and to contribute to α-synuclein 

import into microglia (Kim et al., 2013). TLR4, CD36 and FcγR deficient microglia 

demonstrated attenuated neuroinflammatory responses in response to α-synuclein treatment 

(Fellner et al., 2013, Su et al., 2008, Cao et al., 2012). Misfolded α-synuclein was shown to 

interact with microglial TLR1/2 and mediate Myd-88 dependent pro-inflammatory signaling 

(Daniele et al., 2015). Since we had previously demonstrated early inflammogen-mediated 

activation of Fyn and PKCδ, we sought to link α-synuclein recognition by a microglial 

receptor to Fyn activation. Fyn has classically shown to be activated downstream of CD36 

(Chen et al., 2008; Moore et al., 2002), and more recently, TLR2 in TLR2 overexpressing 

HEK293 cells (Finberg et al., 2012). We immunoprecipitated CD36 and TLR2 in control and 

α-synuclein-stimulated WT microglia and checked for interaction of these receptors with 

both α-synuclein as well as Fyn. Both CD36 and TLR2 interacted with α-synuclein but Fyn 

only interacted with CD36 in α-synuclein-stimulated microglia (Figure 5A). We also checked 

if Fyn activation was inducible upon early α-synuclein stimulation of primary microglia. α-

synuclein treatment rapidly induced the active loop phosphorylation of Fyn. The p-Y416 Src 

family kinase (p-Y416 SFK) antibody was utilized to recognize activated Fyn, since this 

antibody recognizes all active Src family kinases, we checked for the synuclein-induced p-

Y416 SFK levels in Fyn-/- microglia and did not see any discernable Src kinase activation 

(Figure 5B). We also overexpressed FLAG tagged WT and activation loop mutant Fyn 

(Y417A Fyn) in WT primary microglial cells and treated cells with aggregated α-synuclein 

for 15, 30 and 45 min. Whole cell lysates were probed for FLAG and p-SFKY416 antibodies. 

WT Fyn-FLAG transfected cells demonstrated a rapid induction of p-Y416 SFK levels, 

which was abolished in the Y417A Fyn-FLAG transfected groups. The FLAG and p-Y416 
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SFK levels were assessed using secondary antibodies in the red and green channels 

respectively. The FLAG and p-Y416 SFK bands perfectly co-localized in the WT-Fyn 

transfected cells, indicating that Fyn as the Src family kinase that was preferentially activated 

in the cells following aggregated α-synuclein stimulation (Figure 5C). Lastly, 

immunocytochemistry analysis showed that p-Y416 SFK levels rapidly increased in 

microglial cells stimulated with aggregated α-synuclein. Active Fyn is preferentially 

localized along the membrane periphery, which is to be expected since it is activated rapidly 

following association with membrane-bound CD36 (Figure 5D). 

 

Fyn contributes to aggregated α-synuclein mediated NF-κB activation, contributing to 

priming of the NLRP3 inflammasome 

Priming of the NLRP3 inflammasome involves activation of the NF-κB pathway 

downstream of TLR/TNFR1 engagement of their respective ligands. The NF-κB complex 

comprises of heterotrimeric complex - IκBα, p65 and p50. Upon inflammogen stimulation, 

IκBα is phosphorylated and rapidly degraded, allowing the nuclear entry of the p65-NF-κB 

subunit. p65 is a transcription factor that binds to the promoters of various pro-inflammatory 

cytokine genes as well as the NLRP3 gene, bringing about their transcription, leading to the 

production of pro-inflammatory cytokines/pre-cytokines. We have previously shown that Fyn 

contributes to LPS and TNFα-mediated NF-κB activation in microglia (Panicker et al., 

2015). To assess the role of Fyn in α-synuclein-mediated priming of the NLRP3 

inflammasome, we first treated WT and Fyn-/- microglia with aggregated α-synuclein for 30 

min. We then prepared nuclear and cytosolic extracts and probed the nuclear extracts for p65. 

There was lesser α-synuclein-induced nuclear translocation of p65 in the Fyn-/- microglial 
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nuclear lysates (Figure 6A, B). To directly assess the role of Fyn in priming of the 

inflammasome, we treated WT and Fyn-/- microglial cells with α-synuclein for 45 min and 

evaluated mRNA levels of pro-IL-1β, NLRP3, as well as NLRC4 and AIM2. The α-

synuclein-mediated induction of pro-IL-1β and NLRP3 mRNAs was significantly attenuated 

in the Fyn-/- microglia. Notably, α-synuclein treatment did not bring about an induction of 

NLRC4 and AIM2 inflammasome levels, demonstrating that the NLRP3 inflammasome was 

preferentially activated (Figure 6C). We next checked for the induction of NLRP3, pro-IL-1β 

and the levels of cleaved Caspase-1 in the Fyn-/- microglial lysates. WT and Fyn-/- microglia 

were treated with α-synuclein for 2, 4 and 6 h. Immunoblotting analysis revealed that pro-IL-

1β, NLRP3 and cleaved Caspase-1 levels were significantly diminished in the Fyn-/- 

microglia (Figure 6D, E). We also knocked Fyn down using Fyn specific siRNA and 

observed diminished induction of pro-IL-1β in aggregated α-synuclein treated microglia 

(Figure 6F, G). Lastly, immunoblot and luminex analyses of α-synuclein treated microglial 

supernatants revealed diminished secretion of mature IL-1β as well as IL-12 from Fyn-/- cells 

(Figure 6H, I).  

 

 
Fyn contributes to α-synuclein import into microglial cells, thereby contributing to 

NLRP3 inflammasome associated mitochondrial dysfunction 

Although most existing studies agree on the steps that underlie priming of the NLRP3 

inflammasome, the exact nature of the danger or activating signal is contested. The current 

consensus points to lysosomal dysfunction, mitochondrial reactive oxygen species generation 

and potassium efflux as possible molecular events that lead to the assembly of the NLRP3 

inflammasome. Since we observed the interaction of Fyn with CD36, a receptor protein that 
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has been show to play a role in the uptake and aggregation seeding ability of fibrilar amyloid-

β(Sheedy et al., 2013), we wondered whether Fyn might play a role in the uptake of 

synuclein into microglial cells as well. To check for this, human synuclein was added to WT 

and Fyn-/- microglia for various time points, the cells washed 3 times with PBS, then fixed 

and stained for human synuclein to observe intracellular human synuclein. The human α-

synuclein taken up by microglia shows up as intracellular puncta. The number of puncta per 

cell per field were counted and quantified. Taken together, Fyn-/- microglia display 

diminished uptake of human α-synuclein (Figure 7A, B). We also quantified the uptake of 

human α-synuclein using immunoblot.  WT and Fyn-/- microglia were treated with human α-

synuclein for 15, 30 and 45 min. The cell supernatant was aspirated and the cells washed 

several times in PBS. Immunoblots of whole cell lysates for human α-synuclein indicated 

significantly attenuated uptake in the Fyn deficient cells (Figure 7C,D). Uptake of an 

inflammasome activator disrupts cellular homeostasis through several possible mechanisms. 

ROS generation, specifically from the mitochondria, has gained acceptance as a prime 

contributor to inflammasome activation (Zhou et al., 2011). We utilized the mitoSOX dye to 

quantify synuclein induced mitochondrial ROS generation in WT and Fyn-/- microglia. 

Treatment of cells with synuclein rapidly induced progressively increasing mitoROS 

generation in the WT microglia, but did so to a statistically lesser extent in the Fyn-/- 

microglia (Figure 7E). Mitochondrial dysfunction is also characterized by a change in 

morphology of mitochondria, changing from thread like to round. We quantified the 

synuclein-induced change in mitochondrial morphology in the WT and Fyn-/- microglia. 24 h 

post treatment, the microglia in the WT synuclein treated group demonstrated rounded 
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mitochondria, whereas there was no discernable change in mitochondrial morphology in the 

Fyn-/- microglia post synuclein treatment (Figure 7F, G,). 

 

PKCδ  contributes to aggregated α-synuclein mediated NF-κB activation but not α-

synuclein import into microglia 

We have previously demonstrated that upon activation following LPS and TNFα 

stimulation, Fyn associates with and tyrosine phosphorylates the serine threonine kinase 

PKCδ in microglial cells at residue Y311. We observed that α-synuclein also mediated an 

increase in p-Y311 PKCδ levels, but did not do so in the Fyn deficient microglia, suggesting 

a conserved pro-inflammatory signaling pathway downstream of inflammogen activation 

(Figure 8A). Upon checking nuclear lysates from aggregated α-synuclein treated PKCδ+/+ 

and PKCδ-/- cells for p65, we observed diminished activation of the NF-κB pathway, 

evidenced by reduced nuclear p65 in the PKCδ-/- nuclear fractions, reminiscent of the Fyn-

PKCδ mediated signaling cascade downstream of LPS and TNFα activation (Figure 8B,C). 

The aggregated α-synuclein mediated upregulation of pro-IL-1β mRNA was also 

significantly attenuated in the PKCδ deficient microglia (Figure 8D), as was the synthesis of 

pro-IL-1β and NLRP3 proteins (Figure 8E) and the production of supernatant IL-1β (Figure 

8F). We also wanted to check whether PKCδ played a role in α-synuclein import. We used 

whole cell lysates from PKCδ+/+ and PKCδ-/- microglia treated with aggregated α-synuclein 

for 30 and 45 minutes. Upon probing for human α-synuclein, we saw no change between 

either genotype with respect to α-synuclein import (Figure 8G). These results suggest a 

bifurcation of Fyn dependent signaling, showing that Fyn activation feeds into the PKCδ 
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dependent NF-κB pathway activation and priming of the NLRP3 inflammasome, and the 

PKCδ independent import of α-synuclein. 

 

Discussion 

A wealth of evidence from cell culture, animal models and post-mortem analysis of 

brains from PD patients implicates hyperactivation of the innate immune system in the brain 

as being central and contributive to the progressive nature of PD as well as other 

neurodegenerative disorders. This immune reaction is primarily mediated by microglia, the 

macrophagic cells of the brain. Another recent and intriguing hypothesis suggests that 

misfolded α-synuclein can seed aggregation of WT α-synuclein in a prionic manner, 

propagating the spread of neuron death and concurrent inflammation (Luk et al., 2012a; Luk 

et al., 2012b; Volpicelli-Daley et al., 2011). Aggregated α-synuclein has previously been 

demonstrated to effect microglial pro-inflammatory signaling and inflammatory mediator 

production (Zhang et al., 2005). However, the signaling pathways that are utilized to activate 

microglial cells, and specifically the NLRP3 inflammasome in microglia, are poorly 

characterized. This article describes a novel signaling mechanism through which α-synuclein 

aggregates effect the activation of the non-receptor tyrosine kinase Fyn, which contributes to 

both NF-κB priming of the inflammasome as well as α-synuclein import in the microglial 

cells, thereby contributing to the secretion of IL-1β as well as other inflammatory mediators, 

such as nitrite. Inhibitors of the NLRP3 inflammasome and Fyn have been used with success 

to limit the progress of experimental autoimmune encephalitis and AD respectively (Coll et 

al., 2015; Kaufman et al., 2015). It is hence envisageable that similar inhibitors could be used 

to halt the progression of PD. Activation of the NLRP3 inflammasome is a two-step 
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mechanism - a ‘priming’ step that induces levels of pro-IL-1β and NLRP3, and a second 

activating step, that induces the assembly of the inflammasome. Misfolded proteins have 

been shown to activate LPS-primed inflammasomes in microglia (Hafner-Bratkovic et al., 

2012; Halle et al., 2008). We first demonstrate that aggregated α-synuclein can elicit IL-1β 

production in microglia by activating the NLRP3 inflammasome, evidenced by the 

production of IL-1β and the formation of ASC specks in the ASC-CFP reporter cell line 

(Figure 1A-D). A recent paper indicated that commercially obtained aggregated α-synuclein 

couldn’t elicit IL-1β production (Gustin et al., 2015), but this finding is refuted by multiple 

studies that have used recombinant endotoxin-free aggregated α-synuclein to elicit microglial 

IL-1β production (Boza-Serrano et al., 2014; Daniele et al., 2015; Lee et al., 2010), although 

direct involvement of the NLRP3 inflammasome in the aforementioned studies was not 

proven. We sought to identify the signaling pathways through which it might activate the 

inflammasome. We discovered that aggregated α-synuclein amplified the LPS-induced 

expression of the inflammasome components pro-IL-1β and NLRP3 at both the mRNA and 

protein levels and did so in an NF-κB dependent manner (Figure 3A-D). We have previously 

demonstrated the role of the non-receptor tyrosine kinase Fyn in contributing to NF-κB 

activation in response to diverse inflammogens (Panicker et al., 2015). In agreement with 

these findings, we show that LPS and TNFα treatments elicit a dose dependent induction in 

NLRP3 and pro-IL-1β proteins, but do so to a significantly lower extent in Fyn-/- microglia 

(Figure 2A). Fyn-/- mice also demonstrated diminished serum IL-1β responses in response to 

intraperitoneal LPS administration (Figure 2B). The LPS and LPS + α-synuclein induced 

pro-inflammatory signaling was significantly dampened in the Fyn-/- microglia (Figure 3A-

D). The synuclein-mediated induction of Capsase-1 activity, as well as the secretion of pro-
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inflammatory cytokines and nitrite was significantly diminished in the Fyn deficient 

microglia (Figure 3E-G). We then reasoned that α-synuclein could prime and activate the 

NLRP3 inflammasome by itself, without requiring an intervening LPS mediated priming 

step. The α-synuclein-mediated induction of pro-IL-1β and NLRP3 were not changed in 

immortalized microglial cells obtained from Caspase1-/- mice, when compared to WT 

microglial cells. However, the processing of IL-1β was greatly diminished in the Caspase-1 

deficient cells, as evidenced by Luminex cytokine analysis of cell supernatant content 

(Figure 4A, B). Pre-treating cells with the Fyn inhibitor Saracatinib also reduced the 

production of IL-1β from the WT cells in a concentration dependent manner (Figure 4B). To 

prove the involvement of the NLRP3 inflammasome in this process, we showed that 

BMDMs from NLRP3-/-, ASC-/- and Caspase-1-/- had negligible α-synuclein-induced 

Caspase-1 activation (Figure 4C). Furthermore, the α-synuclein-mediated secretion of IL-1β, 

but not TNFα, was greatly diminished in the cell supernatants obtained from these cells, but 

not from cells obtained from Caspase-11-/- mice (Figure 4D). We used Caspase-11-/- BMDMs 

in this study since Caspase-1-/- mice were developed using an S129 mouse background, and 

these mice inherently lack Caspase-11 expression. Caspase-11 has been demonstrated to 

participate in the activation of a non-canonical inflammasome. Microglia obtained from 

Fyn+/+ mice (developed on an S129 background) and PKCδ+/+ (developed on a C57BL6 

background) had nearly identical IL-1β responses to aggregated α-synuclein. Although it has 

been shown in various studies to activate microglia, a direct biochemical interaction of 

synuclein with its receptors has yet to be demonstrated, with the exception of one that shows 

the interaction of TLR1/2 with synuclein, shown by Duolink immunocytochemistry (Daniele 

et al., 2015). We showed that synuclein could interact with the microglial receptors TLR2 
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and CD36 in untransfected, WT microglia. CD36 also interacted with Fyn following 

stimulation with α-synuclein aggregates (Figure 5A). There was a dramatic induction in Fyn 

activation post stimulation with α-synuclein aggregates(Figure 5B-D). In support of our 

hypothesis that Fyn plays a role in NLRP3 inflammasome priming, the α-synuclein-mediated 

nuclear translocation of p65-NF-κB and subsequent mRNA induction of IL-1β and NLRP3 

were diminished in the Fyn-/- cells (Figure 6A-C). The aggregated α-synuclein-mediated 

induction of pro-IL-1β and NLRP3 proteins and the cleavage of Caspase-1 were also 

significantly lesser in the Fyn-/- microglial lysates (Figure 6D, E), as was the production of 

IL-1β and IL-12 (Figure 6H, I). Knockdown of Fyn expression via siRNA-reduced α-

synuclein mediated induction of pro-IL-1β in WT microglia (Figure 6F, G). We also 

wondered whether Fyn activation might contribute to activation of the danger signal with 

regards to inflammasome activation. We first checked for the uptake of α-synuclein into WT 

and Fyn-/- microglia and discovered to our surprise that lesser amounts of α-synuclein were 

taken up by the Fyn-/- cells, as evidenced by ICC for as well as immunoblots for human α-

synuclein (Figure 7A-D). Among the signaling events that contribute to the danger signal 

activation with context to NLRP3 inflammasome activation, excessive ROS generation has 

now been accepted as a cardinal contributor to the activation of the NLRP3 inflammasome in 

various models and it was demonstrated that dysfunctional mitochondria might be the source 

of these species (Tschopp and Schroder, 2010; Zhou et al., 2011). Aggregated α-synuclein 

treatment induced a rapid, progressive, induction of mitoROS generation in WT microglia, 

but did so in the Fyn-/- microglia to a lesser extent (Figure 7E). Excessive mitoROS 

generation leads to eventual change in mitochondrial morphology. This change was observed 

in the WT but not the Fyn-/- microglia (Figure 7F, G). We also observed Fyn dependent 
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PKCδ tyrosine phosphorylation in the cells following α-synuclein stimulation (Figure 8A), 

which is reminiscent of the microglial activation pathway downstream of LPS and TNFα 

(Panicker et al., 2015). PKCδ-/- microglia imported aggregated α-synuclein with equivalent 

efficiency as their wild-type PKCδ+/+ counterparts (Figure 8G), but showed diminished α-

synuclein mediated priming of the NLRP3 inflammasome, and diminished secretion of 

supernatant IL-1β (Figure 8B-F).  

Mitochondrial dysfunction is one of the major causative factors identified to 

contribute to the progression of both sporadic and familial PD. However, most existing 

studies focus on the role of this process in dopaminergic neurons. Several of the PARK genes 

encode proteins that have mitochondrial functions. It is possible that the loss of function of 

these proteins, either through inherited mutations or post-translational inactivation, may 

contribute to mitochondrial dysfunction and consequent NLRP3 inflammasome 

hyperactivation in the microglia. There is evidence to support the notion that the NLRP3 

inflammasome may have relevance in animal models of PD and clinical relevance as well. 

Ole Isaacson and colleagues reported an increase in IL-1β striatal levels using the A53T α-

synuclein-AAV model in rats (although activation of the NLRP3 inflammasome was not 

looked at or discussed) (Chung et al., 2009). Overexpression of IL-1β in the mouse SN can 

directly bring about the death of dopaminergic neurons (Ferrari et al., 2006), and most 

recently, dopamine was shown to inhibit the NLRP3 inflammasome. MPTP treatment was 

utilized to induce a depletion of dopamine levels, which activated the NLRP3 inflammasome 

and subsequent NLRP3 dependent dopaminergic neuron loss (Yan et al., 2015). Our 

subsequent studies will utilize human α-synuclein overexpressing systems in Fyn+/+ and Fyn-/- 

mice to show the role of Fyn in activating the microglial NLRP3 inflammasome in-vivo. It 
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would be intriguing to assess whether sterile inflammation mediated by α-synuclein 

aggregates could act cooperatively with dopamine depletion to mediate unabated 

inflammasome activation that might contribute to the progressive neurodegeneration that 

characterizes PD. Since ASC released from activated peripheral immune cells was 

demonstrated to seed ASC oligomerization in a prionid manner (Baroja-Mazo et al., 2014), it 

might also be intriguing to explore whether microglia-released ASC could contribute to the 

spread of sterile inflammatory responses in PD brains. Overall, as summarized in Figure 9, 

our mechanistic studies demonstrate how Fyn plays a role in both, α-synuclein priming as 

well as activation of the NLRP3 inflammasome in microglial cells, identifying Fyn as a 

potential therapeutic target for inhibiting the sterile inflammation and inflammation-

dependent cell death in PD.  
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Figures 

 

Figure 1. Aggregated α-synuclein acts as a danger signal to elicit NLRP3 inflammasome 

dependent IL-1β processing in LPS primed microglia. A, Aggregated α-synuclein was 

able to elicit significant IL-1β, but not TNFα production from LPS primed microglia.  

Pretreatment of the cells with pan-Caspase and Caspase-1 specific inhibitors post priming but 

before α-synuclein treatment strongly attenuated the production of IL-1β, but minimally 

affected TNFα production. B, The α-synuclein-mediated production of IL-1β was largely 

mediated by the NLRP3 inflammasome, Supernatant cytokine analysis from LPS primed, α-

synuclein treated WT, NLRP3-/-, ASC-/-, Caspase-1-/- and Caspase-11-/- BMDMs revealed 

strongly diminished IL-1β, but not TNFα production from the NLRP3-/-, ASC-/- and Caspase-

1-/-, but minimally affected IL-1β production from the Caspase-11-/- cells, indicating that the 

canonical activation of the NLRP3 inflammasome was primarily responsible for the IL-1β 

production in response to aggregated α-synuclein. C, No discernable changes in the LPS 
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induced pro- IL-1β levels in WT, NLRP3-/-, ASC-/-, Caspase-1-/- and Caspase-11-/- BMDMs. 

D, Aggregated α-synuclein treatment induced speck formation in the ASC-CFP reporter cell 

line.  
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Figure 2. Fyn kinase contributes to the priming of the NLRP3 inflammasome in 

response to diverse inflammogens. A, WT and Fyn-/- microglia were treated with various 

doses of LPS (10. 100 and 1000 ng/mL) and TNFα (10 and 30 ng/mL). Both inflammogens 

elicited a dose-dependent induction of pro-IL-1β and NLRP3 in WT microglia, but did so to 

a significantly lesser extent in the Fyn-/- microglia. B, Fyn-/- mice treated with LPS (5mg/kg) 

for 24 hours showed diminished serum secretion of IL-1β when compared to Fyn+/+ mice. 
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Figure 3. Aggregated α-synuclein amplifies LPS induced priming of the NLRP3 

inflammasome and induces Caspase-1 activation, and pro-inflammatory cytokine and 

nitrite release in a Fyn dependent manner. A, Aggregated α-synuclein potentiated the LPS 

mediated induction of pro-IL-1β and NLRP3, but did so to a lesser extent in the Fyn deficient 

microglia. B, C, Treatment of microglial cells post priming and pre α-synuclein treatment 

with the NF-κB inhibitor SN-50 prevented the induction of pro-IL-1β and NLRP3 proteins 

D, α-synuclein treatment also increased the induction of pro-IL-1β and NLRP3 mRNAs in 

LPS treated WT, but not Fyn-/- microglial cells. E, The FLICA assay revealed strongly 

increased Caspase-1 activation in α-synuclein treated WT but not Fyn-/- microglia. F, LPS 

primed α-synuclein treated WT microglia produced higher amounts of pro-inflammatory 
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cytokines than Fyn deficient microglia. G, α-synuclein treatment induced the production of 

supernatant nitrite and NOS2 expression, but did so to a significantly lesser extent in the Fyn 

deficient microglia. 
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Figure 4. Aggregated α-synuclein can prime and activate the NLRP3 inflammasome to 

mediate IL-1β production. A, Aggregated α-synuclein elicited Caspase-1 independent 

induction of pro-IL-1β and NLRP3 levels, as evidenced by immunoblot analysis from 

synuclein treated WT and Caspase-1-/- microglial cell lysates. B, α-synuclein treatment 

induced the Caspase-1-dependent production of IL-1β from microglial cells, which was also 

inhibited with pretreatment of the Fyn inhibitor Saracatinib in a dose dependent manner. C, 

NLRP3-/-, ASC-/- and Caspase-1-/- BMDMs demonstrated equable α-synuclein mediated 

induction of pro-IL-1β and uptake of α-synuclein, but almost completely attenuated Caspase-

1 cleavage. D, The aggregated α-synuclein mediated production of IL-1β, but not TNFα was 

strongly attenuated in NLRP3-/-, ASC-/-, and Caspase-1-/-, but minimally affected in Caspase-

11-/- BMDM supernatants, indicating that α-synuclein is able to both prime, as well as 

activate the NLRP3 inflammasome primarily through its canonical activation. 
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Figure 5. CD36 associated Fyn is rapidly activated following α-synuclein stimulation. A, 

Upon its treatment to microglial cells, human α-synuclein associates with TLR-2 and CD36, 

as evidenced by co-immunoprecipitation analysis. Upon α-synuclein treatment, Fyn 

associates with CD36, but not TLR2. B, Immunoblot analysis of aggregated α-synuclein 

treated WT and Fyn-/- microglial lysates reveals a rapid induction of Src family kinase 

activation the WT, but not Fyn-/- microglia. C, Whole cell lysate analysis from α-synuclein 

treated wild type (WT) and activation loop deficient (Y417A) Fyn-FLAG transfected cells 

revealed a perfect overlap between the pY416-SFK and FLAG bands in the 30 and 45 min α-

synuclein treated WT Fyn –FLAG transfected samples, and a complete absence of pY416-

SFK activation in the Fyn activation loop mutant transfected samples D, 
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Immunocytochemistry analysis reveals a rapid increase in pY416-SFK levels in α-synuclein 

treated Iba-1 positive WT microglial cells. 
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Figure 6. Fyn contributes to α-synuclein mediated priming of the NLRP3 

inflammasome, resulting in diminished IL-1β and other pro-inflammatory cytokine 

production. A, B, Diminished α-synuclein induced nuclear translocation of NF-κB-p65 in 

the Fyn-/- microglial cells. C, Diminished induction of pro-IL-1β and NLRP3 mRNA levels in 

the Fyn deficient microglial upon α-synuclein treatment D, E, Reduced induction of pro-IL-

1β and NLRP3 protein levels, as well as Caspase -1 and IL-1β cleavage in Fyn-/- microglia. 

F, G, Knocking down Fyn using si-RNA reduces the α-synuclein mediated induction of pro-

IL-1β in primary WT microglia. H, I, Reduced supernatant IL-1β and other pro-

inflammatory cytokine production from α-synuclein treated Fyn-/- microglia. 
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Figure 7. Fyn contributes to aggregated α-synuclein uptake into microglial cells, 

resulting in the mitochondrial ROS generation. A, B, Immunocytochemistry (for human 

α-synuclein) revealed diminished uptake of the protein in the Fyn deficient microglia. C, D, 

Immunoblot analysis also reveals that human α-synuclein is taken up at lesser levels into 

Fyn-/- microglia E, Diminished mitoROS generation from α-synuclein treated Fyn-/- 

microglia. F, G, Diminished mitochondrial morphology deficits observed in the aggregated 

α-synuclein treated Fyn-/- microglia. 
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Figure 8. α-synuclein  treatment brings about Fyn mediated PKCδ  activation, which 

contributes to aggregated α-synuclein mediated priming of the NLRP3 inflammasome, 

but not to α-synuclein import into microglia. A, Immunoblot analysis of aggregated α-

synuclein treated WT and Fyn-/- microglial lysates reveals a rapid induction of pY311-PKCδ 

levels in the WT, but not Fyn-/- microglia. B, C, Reduced aggregated α-synuclein mediated 

p65 nuclear translocation seen in PKCδ-/- microglia.  D, Attenuated α-synuclein induced pro-

IL-1β mRNA induction in PKCδ deficient microglia. E, Reduced induction of pro-IL-1β and 

NLRP3 proteins, and F, secretion of IL-1β from PKCδ-/- microglia. G, No change in the 

import of aggregated α-synuclein import observed between PKCδ+/+ and PKCδ-/- microglia. 
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Figure 9. Aggregated α-synuclein mediated NLRP3 inflammasome activation pathway 

Aggregated α-synuclein binds to the receptors TLR-2 and CD36 on microglial cells. CD36 

recruits Fyn kinase, which in turn is activated and tyrosine phosphorylates PKCδ at Y311, 

leading to increased PKCδ dependent activation of the NF-κB pathway. p65 translocates to 

the nucleus and brings about the induction of pro-IL-1β and NLRP3 mRNAs. Aggregated α-

synuclein is also taken up by the microglia, following which it brings about mitochondrial 

dysfunction mediated activation of the NLRP3 inflammasome. Fyn, but not PKCδ 

contributes to this process as well. 
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CHAPTER 4. HUMAN ALPHA-SYNUCLEIN ACTIVATES THE NLRP3 
INFLAMMASOME IN A FYN-DEPENDENT MANNER IN ANIMAL MODELS OF 

PARKINSON’S DISEASE 
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Abstract 

Parkinson’s disease (PD) is an age related neurodegenerative disorder characterized 

by the progressive degeneration of dopaminergic neurons within the substantia nigra (SN) 

and the concurrent development of motor deficits. It has now been accepted that the loss of 

dopaminergic neurons is accompanied and exacerbated by excessive microgliosis. The 

NLRP3 inflammasome is a multimeric protein complex of the cytosolic pattern recognition 

receptor NLRP3, the adaptor protein ASC, and Caspase-1, which upon assembly, mediates 

the autoproteolytic activation of Caspase-1 and the subsequent Caspase-1 mediated 

processing of pro-IL-1β to mature IL-1β. Hyperactivation of this complex by fibrilar β-

amyloid was previously demonstrated to contribute to the pathogenesis of Alzheimer’s 

disease (AD). We have shown that the aggregated PD associated protein α-synuclein can 

prime and activate the NLRP3 inflammasome in microglia in-vitro in a signaling pathway 

dependent on the non-receptor Src family tyrosine kinase Fyn. We wanted to investigate 
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whether the inflammasome could be activated in in-vivo models of PD involving α-synuclein 

aggregation or overexpression. We first demonstrate the activation of the inflammasome in 

the A53T human α-synuclein overexpression model and in ventral midbrain tissue lysates 

from PD patients. We then utilized the AAV-SYN overexpression model in Fyn+/+ and Fyn-/- 

mice to check for the role that Fyn plays in mediating microgliosis and inflammasome 

activation in-vivo. Both, the α-synuclein induced microgliosis, and ASC speck formation in 

the microglial cells was diminished in the Fyn-/- mice. Lastly, we also demonstrate the 

induction of Fyn within the microglia upon intrastriatal aggregated α-synuclein 

administration and in PD tissues. Taken together, our results suggest that Fyn could mediate 

inflammasome microgliosis and inflammasome activation in Parkinson’s Disease, 

contributing to the progression of the disease. 

 

Introduction 

Parkinson’s Disease (PD) is a progressive neurodegenerative disorder characterized 

by the selective death of dopaminergic neurons of the Substantia nigra (SN) and the 

subsequent development of severe motor deficits. α-synuclein is a protein whose dysfunction 

is intimately associated with both idiopathic as well as genetically inherited PD. Point 

mutations and triplications of the SNCA gene, which codes for the α-synuclein protein, have 

been demonstrated to cause autosomal dominant PD (Allen Reish and Standaert, 2015; 

Appel-Cresswell et al., 2013; Kruger et al., 1998; Lesage et al., 2013; Pasanen et al., 2014; 

Polymeropoulos et al., 1997; Zarranz et al., 2004). Aggregated α-synuclein is also the major 

component of Lewy bodies, the neuropathological hallmark of idiopathic PD. Rodent models 

of PD are essential tools to both, identify and elucidate, the mechanisms though which the 
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disease progresses and also to identify potential therapeutic drug targets whose activation or 

inhibition could prevent or halt its advance. There are several models to study the disease, 

most of which perfectly mimic its most cardinal pathological hallmark, i.e. the death of 

dopaminergic neurons within the SN, which project to the striatum of the brain and mediate 

motor control. However, idiopathic PD is a progressive, age related disease, which occurs 

over decades and involves complicated non-motor deficits, the development of Lewy bodies, 

as well as non-dopaminergic neuronal cell death. The first rodent model system used to study 

PD utilized the unilateral intrastriatal injection of 6-hydroxydopamine (Ungerstedt, 1968). 

This treatment induced the rapid degeneration of dopaminergic neurons within the SN pars 

compacta region (SNpc), as well as a turning asymmetry towards the ipsilateral side. Even 

though this model is nearly 50 years old, it is still commonly used to study PD. Another 

model that was subsequently popularized was the MPTP (1-methyl, 4-phenyl, 1,2,3,6-

tetrahydropyridine) model, which was developed after it was discovered that addicts who had 

injected themselves with MPTP, mistakenly believing it to be the analgesic 1-methyl-4-

phenyl-4-propionoxypiperidine (MPPP) were admitted to the hospital with PD-like 

symptoms that were responsive to treatment with the traditional PD drug - 

levadopa/carbidopa. The offending substance was rapidly identified to be MPTP. Two 

studies that detailed how MPTP causes Parkinsonism in humans and primates rapidly 

followed (Burns et al., 1983; Langston et al., 1983). The MPTP model also effects the death 

of SN dopaminergic neurons, exacerbated neuroinflammation and motor deficits. Both the 

aforementioned models suffered from similar drawbacks; neither model was progressive 

(both treatment regimens induced cell death over days in rodent models, whereas PD occurs 

over decades in their human counterparts) nor displayed the formation of Lewy bodies. The 
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recently developed MitoPark model attempts to alleviate some of these problems by 

selectively knocking out the mitochondrial transcription factor TFAM from dopaminergic 

neurons. The resultant mice develop an age related progressive loss of dopaminergic neurons 

and development of motor deficits (Ekstrand et al., 2007). However, this model utilizes the 

mutation of a protein that has not been linked to genetically inherited PD development, and 

has “lewy body” like inclusions that lack α-synuclein, prompting several researchers to 

question the significance of using such a system.  Newer models of PD utilize mice that 

globally overexpress pathogenic forms of α-synuclein and have been used by several groups, 

but often display the inverse phenotype to the ones seen with the MPTP and 6-OHDA 

models - the formation of synuclein-positive lewy body like structures, progressive 

development of motor deficits but the absence of dopaminergic neuronal loss (Giasson et al., 

2002; Lee et al., 2002). In light of these considerations, it was recently suggested that the 

Adeno-associated Viruse (AAV) mediated α-synuclein (SYN) overexpression model of PD, 

wherein AAVs coding for α-synuclein, or GFP (as a control) are injected into the SNpc in 

mice, might prove to be a superior model when compared to classical PD models (Lindgren 

et al., 2012). This model has been recently shown to elicit progressive dopaminergic neuronal 

loss, as well as the concurrent development of α-synuclein-containing inclusions within the 

dopaminergic neurons (Decressac et al., 2012a; Decressac et al., 2012b). Inflammasomes are 

large multimeric protein complexes comprising of the cytosolic pattern recognition receptors, 

the adaptor protein ASC and Caspase-1. These complexes, when activated, mediate the 

production of the pro-inflammatory cytokines IL-1β and IL-18. The NLRP3 inflammasome 

is the best studied and characterized of the inflammasomes and has recently been implicated 

in the development of Alzheimer’s disease (AD) (Heneka et al., 2013). There is limited 
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evidence to suggest that the NLRP3 inflammasome might be activated in PD neuropathology 

using in vivo model systems; the MPTP-induced dopaminergic neuronal degradation was 

diminished in NLRP3-/- mice (Yan et al., 2015).  Viral vector-mediated overexpression of IL-

1β brought about dopaminergic neurodegeneration (Ferrari et al., 2006). Since we have 

previously demonstrated that aggregated α-synuclein could activate the Fyn-dependent 

NLRP3 inflammasome activation in microglial cells (in-vitro), we wanted to check if this 

finding also held true in PD model systems. To this effect, we utilized various models of 

synuclein-mediated PD, such as the A53T mice as well as the well-characterized AAV-SYN 

model system in Fyn+/+ and Fyn-/- mice. We discovered that viral overexpression of human α-

synuclein, as well as global overexpression of A53T α-synuclein could elicit the activation of 

the NLRP3 inflammasome. In the AAV-SYN model, Fyn-/- mice showed reduced 

microgliosis and inflammasome activation. 

 

Materials And Methods 

Chemicals and Reagents 

Green Fluorescent Protein (GFP) and Human α-synuclein overexpressing adeno-

associated viruses (AAV-GFP, 0.95 X 1013 viral particles per mL and AAV-SYN, 1 X 1013 

viral particles per mL) were obtained from The University of North Carolina Viral Vector 

Core. Both viral vectors were of the AAV-5 serotype and coded for GFP and human α-

synuclein respectively under a chicken β-actin promoter. Antibodies to rabbit ASC and 

Caspase-1 were purchased from Adipogen. Antibodies to rabbit and goat Iba-1 were obtained 

from Wako and Abcam respectively. Antibodies to goat IL-1β were obtained from R & D 

systems. The mouse antibodies for tubulin and human α-synuclein were purchased from 
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Santa Cruz. The rabbit antibody to human α-synuclein and mouse antibody to tyrosine 

hydroxylase (TH) were purchased from EMD Millipore (Billerica, Massachusetts). PD 

patient and age matched ventral midbrain sections were obtained from Dr. Asgar Zaheer at 

the University of Iowa. 

 

A53T mice 

The human α-synuclein A53T overexpressing mice were obtained from Jackson 

laboratories (B6.Cg-Tg(Prnp-SNCA*A53T)23Mkle/J). These mice and their littermate 

controls were housed under standard conditions of constant temperature (22 ± 1°C), humidity 

(relative, 30%), and a 12-h light cycle with food and water provided ad libitum. These mice 

were sacrificed at 4 months of age and their tissues used for various studies. 

 

Animal studies 

The Fyn+/+ and Fyn-/- mice used in these studies were bred in our animal facility. Fyn-/- 

mice were originally obtained from Dr. Dorit Ron’s laboratory at the University of 

California, San Francisco and are available from Jackson Laboratory (stock number 002271). 

The mice were housed under standard conditions of constant temperature (22 ± 1°C), 

humidity (relative, 30%) and a 12-h light cycle with food and water provided ad libitum. Six- 

to eight-week-old male mice were used for all studies.  

 

Stereotactic injection of the AAV-SYN and AAV-GFP viral particles 

Mice were anesthetized with xylazine ketamine. Paw pinch was used to establish 

profound anesthesia. An incision was made at the back of the head and the area was 
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disinfected using povidone-iodine. Mice were mounted on the Angle 2 stereotaxic apparatus 

(Leica Biosystems, St. Louis, MO). The bregma was found and the injection into the SN 

subsequently performed. The coordinates, relative to bregma were: anteroposterior (AP) -3.1 

mm and mediolateral (ML) -1.2 mm relative to bregma, and dorsoventral (DV) -4.0. 0.2 mL 

of AAV-GFP or AAV-SYN solution was injected per min. The needle was left in for 5 min 

to ensure no backflow. The needle was retracted at the rate of 1 mm per min. Intradermal 

injections of lactated ringer’s solution was administered post injection to assist the recovery 

of the mice. 

 

Stereotactic injection of recombinant human aggregated α-synuclein into mice 

Mice were anesthetized as previously described. The mice were injected with 4 mL of 

aggregated  α-synuclein or vehicle. The coordinates, relative to bregma were: 0.7 mm 

anteroposterior, 2 mm lateral and 2.4 mm ventral. 

 

Immunoblotting 

Brain tissue lysates were prepared using modified RIPA buffer and were normalized 

for equal amounts of protein using the Bradford protein assay kit. Equal amounts of protein 

(30-40 µg) were loaded for each sample and separated on either 12% or 15% SDS-PAGE 

gels depending on the molecular weight of the target protein. After separation, proteins were 

transferred to a nitrocellulose membrane and the nonspecific binding sites were blocked for 1 

h using a blocking buffer specifically formulated for fluorescent Western blotting (Rockland 

Immunochemicals). Membranes were then probed with the respective primary antibodies for 

3 h at room temperature or overnight at 4°C. After incubation, the membranes were washed 7 
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times with PBS containing 0.05% Tween 20, and then Secondary IR-680-conjugated anti-

mouse (1:10,000, goat anti-mouse, Molecular Probes) and IR-800 conjugated anti rabbit 

(1:10,000, goat anti-rabbit, Rockland) were used for antibody detection with the Odyssey IR 

imaging system (LiCor). Membranes were visualized on the Odyssey infrared imaging 

system. Antibodies for GAPDH, β-actin and Tubulin were used as loading controls. 

 

Immunohistochemistry 

Immunohistochemistry (IHC) was performed on sections from the SN and other brain 

regions of interest as described previously (Ghosh et al., 2013; Jin et al., 2011). Briefly, mice 

were anesthetized with a mixture of 100 mg/kg ketamine and 10 mg/kg xylazine and then 

perfused transcardially with freshly prepared 4% paraformaldehyde (PFA). Extracted brains 

were post-fixed in 4% PFA for 48 h and 30-µm sections were cut using a freezing microtome 

(Leica Microsystems). Antigen retrieval was performed in citrate buffer (10 mM sodium 

citrate, pH 8.5) for 30 min at 90°C. Sections were then washed several times in PBS and 

blocked with PBS containing 2% BSA, 0.2% Triton X-100 and 0.05% Tween 20 for 1 h at 

room temperature. Sections were then incubated with primary antibodies overnight at 4°C 

and washed 7 times in PBS on a Belly Dancer Shaker (SPI supplies). The sections were 

incubated with Alexa 488, 555 and 633 dye-conjugated secondary antibodies for 75 min at 

room temperature and their cell nuclei were stained with Hoechst dye. Sections were 

mounted on slides using Prolong antifade gold mounting medium (Invitrogen) according to 

the manufacturer’s instructions. Samples were visualized using an inverted fluorescence 

microscope (Nikon TE-2000U) and images were captured using a Spot digital camera 

(Diagnostic Instruments Inc). Samples were then washed several times in PBS and incubated 
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with Alexa 488 and 555 dye-conjugated secondary antibodies. The nuclei were labeled with 

Hoechst stain (10 μg/mL) and coverslips were mounted with Fluoromount medium (Sigma 

Aldrich) on glass slides for visualization.  

 

Confocal imaging and Z stack image acquisition and analysis  

Confocal imaging was performed at the Iowa State University Microscopy Facility, 

also using the Leica DMIRE2 confocal microscope with the 63X and 40X oil objectives and 

Leica Confocal Software. One optical series covered 11-13 optical slices of 0.5 µm thickness 

each. The Imaris software was used to analyze the Z stack images. The surface reconstruction 

wizard in the Imaris software was used to make 3D reconstructions of stacks for easier 

viewing of microglial-dopaminergic contacts. IHC on human sections was performed as 

described above, but with modifications to the protocol. Antigen retrieval was carried 

overnight in citrate buffer (10 mM sodium citrate, pH 8.5) at 4°C prior to the 90°C step. The 

autofluorescence eliminator reagent (Chemicon) was used to eliminate autofluoroscence in 

the sections. 

 

Data analysis  

Data analysis was performed using Prism 4.0 (GraphPad Software, San Diego, CA). 

The data was initially analyzed using one-way ANOVA and Bonferroni's post-test to 

compare the means of treatment groups. Differences of p<0.05 were considered statistically 

significant. Student's t-test was used when comparing two groups. 
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Results 

Activation of the NLRP3 inflammasome in the A53T model and in post-mortem PD 

brain lysates 

NLRP3 inflammasome has previously been conclusively demonstrated in the 

APP/PS-1 AD model, as well as in post-mortem AD brains (Heneka et al., 2013). The major 

readout of inflammasome activation in the aforementioned study was increased levels of 

cleaved Caspase-1. Accordingly, 4 month-old A53T and littermate control striatal lysates 

were assessed for cleaved Caspase-1 levels. There was a striking increase in the levels of 

cleaved Caspase-1 in the A53T striatal lysates, indicating that α-synuclein 

aggregation/overexpression is able to elicit inflammasome activation in-vivo (Fig. 1A). We 

also checked PD patient and age-matched control patient nigral tissue lysates for Caspase-1 

and IL-1β. Both, Caspase-1 and IL-1β levels were significantly increased in the human PD 

lysates (Fig. 1B). Although both Caspase-1 and IL-1β levels were previously shown to be 

elevated in PD brain and CSF samples, these discoveries were made before the concept of the 

inflammasome was postulated (Mogi et al., 1996; Mogi et al., 2000). Data from the A53T 

model and from PD patient lysates provide evidence that there may be in-vivo activation of 

the inflammasome. 

 

AAV-mediated targeted expression of α-synuclein in the ventral midbrain can effect the 

death of dopaminergic neurons in the SN of mice in a Fyn dependent manner. 

We stereotaxically injected AAV-GFP and AAV-SYN into the Fyn+/+ and Fyn-/- 

SNpc. 45 d later, the mice were sacrificed and brains collected, fixed and sectioned. To 

ensure that our injections were precise and no non-specific areas were targeted, we stained 
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the 30 µM thick sections with antibodies for GFP/human synuclein and tyrosine hydroxylase 

(TH), a dopaminergic neuronal marker in separate channels. The SNpc was perfectly targeted 

by the injected by the AAV injections, with a large degree of green and red channel overlap 

seen on the left hand side of the sections (Fig. 2A). Higher magnification images of the 

injected side were taken to greatly appreciate the degree of SNpc dopaminergic neuronal 

targeting (Fig. 2B). The AAV-SYN injected side in the WT mice showed a modest decrease 

of TH positive neurons 45 d post-injection when compared with the AAV-GFP injected 

animals, but there was no such loss in the Fyn-/- mice (Fig. 2A, B). 

 

AAV-SYN overexpression in the SNpc elicits massive microgliosis and microglial-

dopaminergic neuronal gliapse formation in WT, but not the Fyn-/- mice 

Sections from the above study were also stained with antibodies against Iba-1 and TH 

to demonstrate microgliosis, specifically around the SN. This was done because in PD cases, 

the greatest degree of microgliosis is observed within the SNpc itself, contributing to a local 

loss of dopaminergic neurons (Bartels and Leenders, 2007; Mosley et al., 2006; Whitton, 

2010). IHC analysis revealed that overexpression of human-α synuclein, but not GFP, 

induced massive microgliosis within the SN, specifically in the area of maximal 

dopaminergic neuronal loss in the WT mice, supporting the hypothesis that the 

hyperactivation of the microglal inflammatory response might contribute to the loss of 

dopaminergic neuronal loss. No increased microgliosis was observed in the Fyn-/- mouse SN 

sections (Fig. 3A). Recently, it was shown that MPTP intoxication rapidly increased the 

number of microglial-neuronal appositions, called gliapses. The formation of these contacts 

was rapidly followed by microglial phagocytosis of neurons, and inhibiting the formation of 
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these contacts proved to be neuroprotective in the MPTP model (Barcia et al., 2012). Similar 

results were obtained using the 6-OHDA model (Virgone-Carlotta et al., 2013). The Fyn-

dependent formation of microglial-neuronal contacts was an area we explored using the 6-

OHDA model (Panicker et al., 2015). Confocal maximal projection Z stack images were used 

to make 3D reconstructions to visualize the microglial-dopaminergic neuronal contact 

formation with more clarity. As seen in Figure 3B, AAV-SYN overexpression induced a 

massive increase in the microglial cells within the SNpc, and the number of gliapses formed 

per neuron. The Fyn-/-, mice on the other hand, demonstrated diminished microgliosis and 

fewer gliapses (Fig. 3B). 

 

Fyn kinase contributes to microglial inflammasome activation in the AAV-SYN mouse 

model of Parkinson’s disease 

Activation of the NLRP3 inflammasome in PD models is still a dynamic area of 

investigation and has not been conclusively demonstrated yet. However, there is some 

evidence to suggest that it may be activated under certain conditions; the transgenic db/db 

diabetic cell line, when subjected to a regimen with the Parkinsonian toxicant MPTP results 

in activation of the NLRP3 inflammasome and exacerbates neuroinflammation and 

neurodegeneration (Wang et al., 2014). Moreover, synuclein AAV overexpression in the 

nigra results in a significant production of IL-1β and TNFα in a rat model of 

synucleinopathy, even though the role of the inflammasome in this process was not 

conclusively proven (Chung et al., 2009). A recent study showed that NLRP3-/- mice were 

resistant to MPTP-induced TH-positive cell loss (Yan et al., 2015).  One of the means to 

validate activation of the inflammasome in vivo is the formation of ASC specks in the 
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microglia. This was done in the APP/PS1 mice AD model (Heneka et al., 2013). 

Accordingly, to assess whether microglial inflammasome activation could be driven by 

human α-synuclein overexpression in vivo, we stained sections from this study with 

antibodies to ASC and Iba-1. The number of microglial cells that showed ASC specks per 

field were counted and quantified. AAV-SYN-injected WT, but not Fyn-/- mice demonstrated 

a significant increase in the number of ASC speck-positive microglia, showing that the AAV-

SYN model effected the Fyn-dependent activation of the inflammasome in microglia  (Fig. 

4A, B). 

 

Intrastriatal injection of α-synuclein aggregates effects microgliosis with concurrent 

upregulation of microglial Fyn 

We have previously demonstrated that prolonged exposure to the inflammogens - 

LPS and TNFα results in the upregulation of Fyn kinase in microglial cells (Panicker et al., 

2015).  We wanted to observe whether these results could be extended to in-vivo models of 

microgliosis. Stereotactic injections of aggregated α-synuclein have previously been 

demonstrated to elicit pro-inflammatory responses (Couch et al., 2011). We injected Fyn+/+ 

mice with 4 µg of α-synuclein protein in the striatum. Coronal brain sections from these mice 

were then stained for Iba-1 to mark microglia as well as Fyn. We saw that on the injected 

side, there was a dramatic shift of microglial morphology from ramified to amoeboid, 

indicating microglial activation, along with increased Fyn expression within the Iba-1-

positive microglia (Fig. 5). 
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Microglial upregulation of Fyn in post-mortem PD brain sections 

To provide a clinically relevant role for Fyn kinase in PD pathology, we stained 

human PD and age-matched control ventral midbrain sections with antibodies to Fyn and 

Iba-1. We observed that there was a strikingly increased expression of Fyn within the Iba-1-

positive microglia in the PD brain sections providing clinical significance to our in-vitro and 

in-vivo findings (Fig. 6). 

 

Discussion 

PD is a devastating neurodegenerative disorder characterized by the loss of 

dopamine-producing neurons within the SNpc. It has now been universally accepted that this 

loss of neurons is accompanied by an excessive neuroinflammatory response, which 

contributes to the progressive nature of the disease. In-vivo models of Parkinsonian 

dysfunction are able to recapitulate various facets of PD with varying degrees of success; 

both the well utilized and characterized MPTP and 6-OHDA models can bring about the 

selective death of dopaminergic neurons within the SNpc, along with a concomitant 

neuroinflammatory response, but have been criticized for not being able to recapitulate the 

finer neuropathological hallmarks of PD, vis-à-vis the formation of Lewy bodies, a 

progressive age-dependent loss of neurons, etc. Among the new generation of PD models 

developed, the A53T human α-synuclein overexpressing mice and the AAV-SYN model 

have several advantages over the aforementioned classical models, such as the development 

of proteinaceous inclusions and progressive dopaminergic neuron loss (Decressac et al., 

2012a; Decressac et al., 2012b). Using the AAV-SYN model is also of significance to us 

because it evokes a marked pro-inflammatory response. Previously we demonstrated how 
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aggregated human α-synuclein mediated the Fyn kinase-dependent priming and activation of 

the NLRP3 inflammasome in microglia. We wanted to assess whether inflammasome could 

be activated in the AAV-SYN model, and whether Fyn contributed to this response. We first 

provide evidence for the posit that inflammasomes might be activated in the A53T model and 

in PD post-mortem tissues, both of which showed greater levels of cleaved Caspase-1 than 

the control littermate/age-matched human control brain lysates respectively (Fig. 1A, B). We 

next stereotactically injected AAV-SYN or AAV-GFP constructs into Fyn+/+ and Fyn-/- mice. 

The SNpc was targeted perfectly, with the TH-positive dopaminergic neurons on the injected 

side in both genotypes expressing human α-synuclein or GFP respectively (Fig. 2A, B). Just 

45 d post-injection of the AAV-SYN, but not the GFP-SYN constructs, Fyn+/+ mice displayed 

some loss of dopaminergic neurons on the injected side. The Fyn-/- mice showed no such loss 

(Fig. 2A). PD is characterized by microgliosis within the SN. To check for nigral 

microgliosis, we stained sections for TH (as a dopaminergic neuron marker) and Iba-1 (as a 

marker of microglia). There was massive microgliosis observed in the AAV-SYN injected 

Fyn+/+ mice, and a complete absence of the same in the Fyn-/- mice. AAV-GFP 

overexpression did not seem to elicit a microglial inflammatory response in either the Fyn+/+ 

or Fyn-/- mice (Fig. 3A, B). ASC oligomerization and speck formation are classical hallmarks 

of inflammasome activation in microglial cells, which have previously been demonstrated in 

AD models (Heneka et al., 2013). There is evidence to support the notion that the NLRP3 

inflammasome may have relevance in animal models of PD and clinical relevance as well. 

Ole Isaacson and colleagues reported an increase in IL-1β striatal levels using the A53T α-

synuclein-AAV model in rats (although activation of the NLRP3 inflammasome was not 

looked at or discussed) (Chung et al., 2009). Overexpression of IL-1β in the mouse SN can 
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directly bring about the death of dopaminergic neurons (Ferrari et al., 2006), and most 

recently, dopamine was shown to inhibit the NLRP3 inflammasome. MPTP treatment was 

utilized to induce a depletion of dopamine levels, which activated the NLRP3 inflammasome 

and subsequent NLRP3-dependent dopaminergic neuron loss (Yan et al., 2015). We assessed 

the ASC speck formation within microglia in the AAV-SYN and AAV-GFP injected Fyn+/+ 

and Fyn-/- mice. There was an induction of ASC specks in the WT mice injected with AAV-

SYN, but no such change in the Fyn-/- mice microglia (Fig. 4A, B). This supports our 

hypothesis that α-synuclein overexpression might contribute to inflammasome activation in 

vivo, and that Fyn might mediate this process. We also recently demonstrated that prolonged 

exposure of microglial cells to various inflammogens upregulated the levels of Fyn kinase 

(rather than just increasing kinase activity). To test whether this might occur in in-vivo 

models, we injected WT and Fyn-/- mice with aggregated α-synuclein (4 µg) for 4 d in the 

striatum. α-synuclein injection elicited a distinct shift in the microglial morphology from 

ramified (unactivated) to amoeboid (activated), along with a concomitant increase in Fyn 

expression in the Iba-1-positive microglia (Figure 5). We also assessed the expression of Fyn 

in human PD and age-matched control ventral midbrain sections. We observed upregulated 

expression of Fyn in the Iba-1-positive microglia within the SN, providing clinical relevance 

for our findings (Figure 6). It would be intriguing to assess whether sterile inflammation 

mediated by α-synuclein aggregates could act cooperatively with dopamine depletion to 

mediate unabated inflammasome activation that might contribute to the progressive 

neurodegeneration that characterizes PD. Since ASC released from activated peripheral 

immune cells was demonstrated to seed ASC oligomerization in a prionid manner (Baroja-
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Mazo et al., 2014), it might also be intriguing to explore whether microglia released ASC 

could contribute to the spread of sterile inflammatory responses in PD brains.  
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Figures 

 

 Figure 1. Inflammasome activation is elicited in A53T human α-synuclein 

overexpressing mice and in PD ventral midbrain lysates. A, Immunoblot analysis of 4 

month old A53T striatal lysates revealed significant increase in the levels of cleaved 

Caspase-1 levels, when compared to littermate controls. B, Immunoblot analysis of PD nigral 

tissue lysates revealed significantly increased IL-1β and Caspase-1 p20 levels when 

compared to age –matched control nigral lysates. 
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Figure 2. Viral mediated targeted overexpression of human synuclein and GFP in the 

SNpc of Fyn+/+ and Fyn-/- mice. A, Fyn+/+ and Fyn-/- mice were intranigrally injected with 

AAVs encoding GFP and human α-synuclein. Coronal brain sections were stained for 

GFP/human α-synuclein and TH. B, Higher magnification images of the injection sites 

reveal that the dopaminergic neurons were well targeted, with a large degree of overlap 

between the red (for TH) and green (for GFP or human α-synuclein) channels. 
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Figure 3. Diminished microgliosis in Fyn deficient mice using the AAV-SYN PD model.  

A, Massive microgliosis was observed within the SN in the Fyn+/+ mice injected with the 

AAV-SYN construct, but not the Fyn-/- mice. AAV-GFP overexpression did not induce 

microgliosis. B, 3-D reconstruction of the Z-stack images in the ventral midbrain of AAV-

SYN injected WT and Fyn-/- reveals the disparity of the microglial response/ neuron between 

the genotypes.  
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Figure 4. Fyn contributes to microglial inflammasome activation in the AAV-SYN PD 

model.  A, Formation of ASC specks within the microglial cells in the Fyn+/+, but not Fyn-/- 

AAV-SYN injected ventral midbrain sections. B, Quantification of the microglial population 

positive for  ASC specks upon AAV-GFP or AAV-SYN injection in Fyn+/+ and Fyn-/- ventral 

midbrain sections. 
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Figure 5. Intrastriatal injection of aggregated α-synuclein elicits Fyn protein induction 

within the Iba-1 positive microglia. Aggregated α-synuclein intrastriatal injection results in 

the activation of microglia, as seen by the shift in microglial morphology from ramified to 

amoeboid, along with a concurrent induction of Fyn within the microglia.  
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Figure 6. Microglial Fyn is upregulated in PD patient brains over age-matched control 

brains.  PD patient and age-matched control ventral midbrain sections were stained for Iba-1 

and Fyn. PD patient brains display more Iba-1 expression, and increased Fyn expression 

within the Iba-1, indicating microgliosis and microglial Fyn upregulation. 
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CHAPTER 5. GENERAL CONCLUSION AND FUTURE DIRECTIONS 

This section presents a general overview of the results and findings described in the 

thesis, with special emphasis on future directions and overall implications of these findings 

for the pathogenesis and progression of Parkinson’s disease.  The major findings pertaining 

to each research manuscript and their specific implications are covered in the ‘results and 

discussion’ sections of the relevant chapters. 

 

Fyn and Fyn-dependent PKCδ activation contribute to pro-inflammatory responses in 

microglia 

The primary finding from Chapter 2 of the thesis is that the non-receptor Src family 

tyrosine kinase Fyn is rapidly activated following stimulation of microglia with both TLR 

and TNFR1 ligands. The activated Fyn then tyrosine-phosphorylates PKCδ, which in turn 

contributes to the activation of the MAP kinase and NF-κB pathways and the subsequent 

production of pro-inflammatory mediators in microglia. Although we have demonstrated 

conclusively that the NF-κB activation is diminished in Fyn-/- and PKCδ-/- microglia 

(Panicker et al., 2015) (Panicker et al., 2015, Gordon et al., submitted), future studies will 

identify what substrates PKCδ phosphorylates to mediate pro-inflammatory responses. Other 

studies involving peripheral immune cells offer clues as to what these substrates might be. It 

was shown that PKCδ not only phosphorylates the p47 subunit of the nicotinamide adenine 

dinucleotide phosphate (NADPH) oxidase complex, which mediates production of ROS from 

immune cells (Cheng et al., 2007), but also the p65 subunit of the NF-κB complex in 

vascular smooth muscle cells (Ren et al., 2014). PKCδ also phosphorylates PKD1 at residue 

S744 (Asaithambi et al., 2011; Doppler and Storz, 2007). PKD1 is an indispensable 
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component of the Myd-88 dependent pro-inflammatory signaling pathway downstream of 

TLR ligands (Park et al., 2009). A wealth of data has emerged showing how PKCδ is cleaved 

by Caspase-3, contributing to the pro-apoptotic pathway in dopaminergic neurons 

(Anantharam et al., 2002; Kitazawa et al., 2003; Yang et al., 2004). PKCδ is cleaved into a 

regulatory fragment (RF) and a catalytic fragment (CF), the latter of which enters the nucleus 

and induces apoptosis. Interestingly, PKCδ can be cleaved in microglial cells where the CF 

contributes to NF-κB activation (Burguillos et al., 2011). In summary, PKCδ is activated by 

Fyn-mediated tyrosine phosphorylation at Y311, which contributes to an increase in its 

kinase activity. Activated PKCδ contributes to NF-κB activation in a variety of ways, which 

will be explored in future studies. 

 

Fyn- and PKCδ-deficient mice are resistant to neuroinflammation and 

neurodegeneration in PD models 

In Chapter 2, we showed that Fyn-/- and PKCδ-/- mice display attenuated pro-

inflammatory striatal cytokine responses upon LPS treatment. They also exhibit less 

microgliosis and neuron death in the 6-OHDA PD model. To build upon these studies, we 

next utilized known Fyn inhibitor compounds and their analogues to test whether they have 

anti-inflammatory effects in various PD mouse models. Recently, the Fyn inhibitor 

Saracatinib was shown to prevent microgliosis in an AD mouse model (Kaufman et al., 

2015). In addition, rosmarinic acid was demonstrated to be a Fyn inhibitor (Jelic et al., 2007). 

We intend to assess the ability of this compound and its analogues to inhibit Fyn in vitro and 

also to prevent microglia activation in PD mouse models. Next, to prove that microglial Fyn 

contributes to PD dopaminergic neuronal death, we will selectively knock out Fyn in the 
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microglial cells. To accomplish this, we will utilize the CX3CR1 Cre-ER mice, available 

from Jackson laboratories. Microglia express high amounts of the chemokine receptor 

CX3CR1, but the other resident cells of the CNS, the neurons and astrocytes do not. 

Investigators have made use of the CX3CR1 gene promoter, replacing the gene downstream 

of the promoter with the gene for Cre recombinase fused to a mutant estrogen ligand binding 

domain (ER) that requires the presence of tamoxifen to be activated. These mice will be 

crossed with Fynfl/fl mice, which have the Fyn gene flanked by two loxP sites. Upon 

administration of tamoxifen, the microglial cells express Cre recombinase, which then 

catalyzes the site-specific recombination between the loxP sites, effectively knocking out 

Fyn. Peripheral immune cells that express Fyn will also undergo Fyn knockout, but these 

cells have short half-lives and are replaced within 4 weeks, whereas microglial cells are long-

lived and are not replaced. Hence, 4 weeks post-tamoxifen injection, only the resident 

microglial cells have no Fyn expression. This strategy was utilized to selectively knock out 

the protein TAK1 from microglia (Goldmann et al., 2013). Conditional microglial-specific 

Fyn knockout mice will be subjected to PD-related inflammogens including LPS, 6-OHDA, 

and MPTP to further characterize downstream signaling-associated neuroinflammatory 

processes in PD.  Additional characterization of Fyn-dependent proinflammatory signaling 

will eventually yield novel disease-modifying strategies for slowing or halting the 

progression of neurodegenerative processes underlying Parkinson’s disease.   
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Fyn contributes to α-synuclein-mediated priming and activation of the NLRP3 

inflammasome 

Chapter 3 demonstrates that Fyn is rapidly activated by aggregated α-synuclein, the 

major component of PD-associated Lewy bodies, and mediates PKCδ Y311 phosphorylation, 

which in turn feeds into NF-κB pathway activation. Fyn also contributes to the uptake of α-

synuclein into microglial cells, which in turn acts as a danger signal, causing the release of 

MitoROS to activate the NLRP3 inflammasome. We predict that the ability of Fyn to 

regulate α-synuclein entry into microglial cells occurs in tandem with the membrane-bound 

receptor CD36.  We also think that CD36 regulates Fyn activity, and that the 

inhibition/knockdown of CD36 prevents Fyn-mediated priming and activation of the NLRP3 

inflammasome. To evaluate this hypothesis, we cultured primary microglia extracted from 

CD36-/- mice (Jackson Laboratories) and checked for the aggregated α-synuclein-mediated 

induction of NLRP3 and IL-1β proteins, as well as the uptake of aggregated α-synuclein. We 

also reduced CD36 expression/activity either by knocking down the expression of CD36 via 

siRNA or by using CD36 inhibitor peptides. Usage of CD36 inhibitors has been described 

previously (Angin et al., 2012; Kuda et al., 2013). 

 

Alpha-synuclein aggregates activate the NLRP3 inflammasome in a Fyn dependent 

manner in PD mouse models 

In Chapter 4, we utilized the A53T model, showing that these mice have hugely 

elevated levels of cleaved or activated Caspase-1. Lysates from control and PD brain tissues 

also showed elevated Caspase-1 levels under PD conditions. We then used the AAV-SYN 

model to show diminished microgliosis, ASC speck formation and TH neuronal loss in Fyn-
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deficient mice. As mentioned previously, the pre-formed fibril (PFF) model of α-synuclein 

spread has gained support, whereby aggregated forms of α-synuclein can seed aggregation 

and propagate in a prionic manner. Astrogliosis, but not microgliosis, has been demonstrated 

in this model (Luk et al., 2012a; Luk et al., 2012b; Volpicelli-Daley et al., 2011). As our next 

logical step, we injected WT and Fyn-/- mice with α-synuclein PFFs and sacrificed them at 

various time points to check for microgliosis, ASC speck formation and Caspase-1 activation 

(via in-vivo FLICA assay). Some mice were also used to make tissue lysates to check for 

increased cleaved Caspase-1 levels. Since we demonstrated that prolonged exposure to 

inflammogens results in the induction of Fyn expression in microglial cells in vivo and in 

vitro, we anticipated the microglial upregulation of Fyn in this model. We assessed this by 

performing IHC for Iba-1 and Fyn. We also stereotaxically injected WT and microglial 

specific conditional Fyn knockout animals with the AAV-GFP and AAV-SYN constructs 

and checked for microgliosis, inflammasome activation and neurodegeneration at various 

time points. 

To conclusively prove that the hyperactivation of the NLRP3 inflammasome 

contributes to α-synuclein-induced pathology in PD models, we will either have to breed the 

A53T mice to NLRP3-/-, ASC-/- and Caspase-1-/- mice, or stereotaxically inject shRNAs to 

these proteins within the ventral midbrain in WT and A53T mice. Even though neither 

method will cause a microglial-specific knockdown of the proteins, the results might prove 

useful in implicating the NLRP3 inflammasome as being instrumental in PD progression. 

Similar results were obtained with the APP/PS1 AD mouse model. When crossed to NLRP3-

deficient or Caspase-1 deficient mice, AD pathology was almost completely attenuated 

(Heneka et al., 2013). We anticipate similar results with the A53T model.  Finally, we intend 
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to cross the A53T line with our global Fyn knockout mouse line to generate A53T/Fyn-/- 

double transgenic mice.  Inflammasome activation, microgliosis, and neuronal pathology will 

be assessed at various time points in these mice. 
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